WBG功率半导体器件综述

J. Millán
{"title":"WBG功率半导体器件综述","authors":"J. Millán","doi":"10.1109/SMICND.2012.6400696","DOIUrl":null,"url":null,"abstract":"It is worldwide accepted that a real breakthrough in the Power Electronics field mainly comes from the development and use of Wide Band Gap (WBG) semiconductor devices. WBG semiconductors such as SiC, GaN, and diamond show superior material properties, which allow operation at high switching speed, high voltage and high temperature. These unique performances provide a qualitative change in their applications for energy processing. From energy generation to the end-user, the electric energy undergoes a number of conversions, which are currently highly inefficient to the point that it is estimated that only 20% of the whole energy involved in energy generation reaches the end-user. WGB semiconductors increase the conversion efficiency thanks to their outstanding material properties. The recent progress in the development of high voltage WBG power semiconductor devices, especially SiC and GaN, is reviewed. Future trends in device development and industrialization are also addressed.","PeriodicalId":9628,"journal":{"name":"CAS 2012 (International Semiconductor Conference)","volume":"113 1","pages":"57-66"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"A review of WBG power semiconductor devices\",\"authors\":\"J. Millán\",\"doi\":\"10.1109/SMICND.2012.6400696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is worldwide accepted that a real breakthrough in the Power Electronics field mainly comes from the development and use of Wide Band Gap (WBG) semiconductor devices. WBG semiconductors such as SiC, GaN, and diamond show superior material properties, which allow operation at high switching speed, high voltage and high temperature. These unique performances provide a qualitative change in their applications for energy processing. From energy generation to the end-user, the electric energy undergoes a number of conversions, which are currently highly inefficient to the point that it is estimated that only 20% of the whole energy involved in energy generation reaches the end-user. WGB semiconductors increase the conversion efficiency thanks to their outstanding material properties. The recent progress in the development of high voltage WBG power semiconductor devices, especially SiC and GaN, is reviewed. Future trends in device development and industrialization are also addressed.\",\"PeriodicalId\":9628,\"journal\":{\"name\":\"CAS 2012 (International Semiconductor Conference)\",\"volume\":\"113 1\",\"pages\":\"57-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAS 2012 (International Semiconductor Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMICND.2012.6400696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAS 2012 (International Semiconductor Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2012.6400696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

世界范围内普遍认为,电力电子领域的真正突破主要来自于宽带隙半导体器件的开发和使用。WBG半导体,如SiC, GaN和金刚石显示出优越的材料特性,允许在高开关速度,高电压和高温下工作。这些独特的性能使其在能源处理中的应用发生了质的变化。从能源产生到最终用户,电能经过多次转换,目前效率极低,据估计,在能源产生过程中,只有20%的能量到达最终用户。WGB半导体由于其优异的材料特性而提高了转换效率。综述了近年来高压WBG功率半导体器件,特别是SiC和GaN的研究进展。还讨论了设备开发和工业化的未来趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of WBG power semiconductor devices
It is worldwide accepted that a real breakthrough in the Power Electronics field mainly comes from the development and use of Wide Band Gap (WBG) semiconductor devices. WBG semiconductors such as SiC, GaN, and diamond show superior material properties, which allow operation at high switching speed, high voltage and high temperature. These unique performances provide a qualitative change in their applications for energy processing. From energy generation to the end-user, the electric energy undergoes a number of conversions, which are currently highly inefficient to the point that it is estimated that only 20% of the whole energy involved in energy generation reaches the end-user. WGB semiconductors increase the conversion efficiency thanks to their outstanding material properties. The recent progress in the development of high voltage WBG power semiconductor devices, especially SiC and GaN, is reviewed. Future trends in device development and industrialization are also addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信