联合信号频率、doa和传感器互耦估计的可分维子空间方法

J. Mao, B. Champagne, M. O'Droma, K. Kwiat
{"title":"联合信号频率、doa和传感器互耦估计的可分维子空间方法","authors":"J. Mao, B. Champagne, M. O'Droma, K. Kwiat","doi":"10.1109/ACSSC.2000.911026","DOIUrl":null,"url":null,"abstract":"To extract the frequencies and direction of arrivals (DOAs) of multiple sources from experimental data collected by a sensor array is a multiple parameter estimation problem. Some important algorithms for spatial-temporal processing have been developed in the past decades. A practical problem, not often considered, is that the different sensors in the array affect each other through mutual coupling. This effect varies with frequencies and degrades the performance of algorithms. Thus, a separable dimension subspace method to simultaneously estimate signal frequencies, direction of arrivals (DOAs) and sensor mutual coupling is proposed.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"29 1","pages":"605-609 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Separable dimension subspace method for joint signal frequencies, DOAs and sensor mutual coupling estimation\",\"authors\":\"J. Mao, B. Champagne, M. O'Droma, K. Kwiat\",\"doi\":\"10.1109/ACSSC.2000.911026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To extract the frequencies and direction of arrivals (DOAs) of multiple sources from experimental data collected by a sensor array is a multiple parameter estimation problem. Some important algorithms for spatial-temporal processing have been developed in the past decades. A practical problem, not often considered, is that the different sensors in the array affect each other through mutual coupling. This effect varies with frequencies and degrades the performance of algorithms. Thus, a separable dimension subspace method to simultaneously estimate signal frequencies, direction of arrivals (DOAs) and sensor mutual coupling is proposed.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"29 1\",\"pages\":\"605-609 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.911026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.911026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

从传感器阵列采集的实验数据中提取多信号源的到达频率和到达方向是一个多参数估计问题。在过去的几十年里,一些重要的时空处理算法得到了发展。一个不常被考虑的实际问题是,阵列中的不同传感器通过相互耦合相互影响。这种影响随着频率的变化而变化,并且会降低算法的性能。为此,提出了一种同时估计信号频率、到达方向和传感器互耦的可分离维子空间方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separable dimension subspace method for joint signal frequencies, DOAs and sensor mutual coupling estimation
To extract the frequencies and direction of arrivals (DOAs) of multiple sources from experimental data collected by a sensor array is a multiple parameter estimation problem. Some important algorithms for spatial-temporal processing have been developed in the past decades. A practical problem, not often considered, is that the different sensors in the array affect each other through mutual coupling. This effect varies with frequencies and degrades the performance of algorithms. Thus, a separable dimension subspace method to simultaneously estimate signal frequencies, direction of arrivals (DOAs) and sensor mutual coupling is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信