{"title":"电喷雾填充纳米孔粒子","authors":"A. Coll, S. Bermejo, L. Castañer","doi":"10.1109/CDE.2013.6481378","DOIUrl":null,"url":null,"abstract":"Nanostructuring materials such as silicon provides a good technology to fabricate optical and sensing devices. The possibility to fill the pores or channels with different material opens the way to new applications. In this work, we study the electrokinetics of electrospraying technique to fill porous material with nanobeads. The simulations take into account a photonic crystal topology applying a difference potential of 14 kV. Measurements show the viability of filling alumina nanoporous with 360nm polyestyrene nanospheres.","PeriodicalId":6614,"journal":{"name":"2013 Spanish Conference on Electron Devices","volume":"98 1","pages":"203-206"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanohole particle filling by electrospray\",\"authors\":\"A. Coll, S. Bermejo, L. Castañer\",\"doi\":\"10.1109/CDE.2013.6481378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanostructuring materials such as silicon provides a good technology to fabricate optical and sensing devices. The possibility to fill the pores or channels with different material opens the way to new applications. In this work, we study the electrokinetics of electrospraying technique to fill porous material with nanobeads. The simulations take into account a photonic crystal topology applying a difference potential of 14 kV. Measurements show the viability of filling alumina nanoporous with 360nm polyestyrene nanospheres.\",\"PeriodicalId\":6614,\"journal\":{\"name\":\"2013 Spanish Conference on Electron Devices\",\"volume\":\"98 1\",\"pages\":\"203-206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Spanish Conference on Electron Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDE.2013.6481378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Spanish Conference on Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDE.2013.6481378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanostructuring materials such as silicon provides a good technology to fabricate optical and sensing devices. The possibility to fill the pores or channels with different material opens the way to new applications. In this work, we study the electrokinetics of electrospraying technique to fill porous material with nanobeads. The simulations take into account a photonic crystal topology applying a difference potential of 14 kV. Measurements show the viability of filling alumina nanoporous with 360nm polyestyrene nanospheres.