{"title":"低延迟布尔函数和双射s盒","authors":"Shahram Rasoolzadeh","doi":"10.46586/tosc.v2022.i3.403-447","DOIUrl":null,"url":null,"abstract":"In this paper, we study the gate depth complexity of (vectorial) Boolean functions in the basis of {NAND, NOR, INV} as a new metric, called latency complexity, to mathematically measure the latency of Boolean functions. We present efficient algorithms to find all Boolean functions with low-latency complexity, or to determine the latency complexity of the (vectorial) Boolean functions, and to find all the circuits with the minimum latency complexity for a given Boolean function. Then, we present another algorithm to build bijective S-boxes with low-latency complexity which with respect to the computation cost, this algorithm overcomes the previous methods of building S-boxes.As a result, for latency complexity 3, we present n-bit S-boxes of 3 ≤ n ≤ 8 with linearity 2n−1 and uniformity 2n−2 (except for 5-bit S-boxes for whose the minimum achievable uniformity is 6). Besides, for latency complexity 4, we present several n-bit S-boxes of 5 ≤ n < 8 with linearity 2n−2 and uniformity 2n−4.","PeriodicalId":37077,"journal":{"name":"IACR Transactions on Symmetric Cryptology","volume":"13 1","pages":"403-447"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-Latency Boolean Functions and Bijective S-boxes\",\"authors\":\"Shahram Rasoolzadeh\",\"doi\":\"10.46586/tosc.v2022.i3.403-447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the gate depth complexity of (vectorial) Boolean functions in the basis of {NAND, NOR, INV} as a new metric, called latency complexity, to mathematically measure the latency of Boolean functions. We present efficient algorithms to find all Boolean functions with low-latency complexity, or to determine the latency complexity of the (vectorial) Boolean functions, and to find all the circuits with the minimum latency complexity for a given Boolean function. Then, we present another algorithm to build bijective S-boxes with low-latency complexity which with respect to the computation cost, this algorithm overcomes the previous methods of building S-boxes.As a result, for latency complexity 3, we present n-bit S-boxes of 3 ≤ n ≤ 8 with linearity 2n−1 and uniformity 2n−2 (except for 5-bit S-boxes for whose the minimum achievable uniformity is 6). Besides, for latency complexity 4, we present several n-bit S-boxes of 5 ≤ n < 8 with linearity 2n−2 and uniformity 2n−4.\",\"PeriodicalId\":37077,\"journal\":{\"name\":\"IACR Transactions on Symmetric Cryptology\",\"volume\":\"13 1\",\"pages\":\"403-447\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Transactions on Symmetric Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46586/tosc.v2022.i3.403-447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Transactions on Symmetric Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46586/tosc.v2022.i3.403-447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Low-Latency Boolean Functions and Bijective S-boxes
In this paper, we study the gate depth complexity of (vectorial) Boolean functions in the basis of {NAND, NOR, INV} as a new metric, called latency complexity, to mathematically measure the latency of Boolean functions. We present efficient algorithms to find all Boolean functions with low-latency complexity, or to determine the latency complexity of the (vectorial) Boolean functions, and to find all the circuits with the minimum latency complexity for a given Boolean function. Then, we present another algorithm to build bijective S-boxes with low-latency complexity which with respect to the computation cost, this algorithm overcomes the previous methods of building S-boxes.As a result, for latency complexity 3, we present n-bit S-boxes of 3 ≤ n ≤ 8 with linearity 2n−1 and uniformity 2n−2 (except for 5-bit S-boxes for whose the minimum achievable uniformity is 6). Besides, for latency complexity 4, we present several n-bit S-boxes of 5 ≤ n < 8 with linearity 2n−2 and uniformity 2n−4.