{"title":"重力介质中Proca方程的Cauchy问题","authors":"F. Steininger, Piotr T. Chru'sciel","doi":"10.1063/5.0156319","DOIUrl":null,"url":null,"abstract":"We analyze the Cauchy problem for the Proca equation in dielectric media in a curved spacetime.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"440 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cauchy problem for the Proca equation in gravitating dielectric media\",\"authors\":\"F. Steininger, Piotr T. Chru'sciel\",\"doi\":\"10.1063/5.0156319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the Cauchy problem for the Proca equation in dielectric media in a curved spacetime.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"440 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0156319\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0156319","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects:
mathematical problems of modern physics;
complex analysis and its applications;
asymptotic problems of differential equations;
spectral theory including inverse problems and their applications;
geometry in large and differential geometry;
functional analysis, theory of representations, and operator algebras including ergodic theory.
The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.