HIV动态模型的层次贝叶斯参数估计

Mokaedi V. Lekgari
{"title":"HIV动态模型的层次贝叶斯参数估计","authors":"Mokaedi V. Lekgari","doi":"10.12988/ASB.2015.517","DOIUrl":null,"url":null,"abstract":"Most studies on parameter estimation for HIV dynamic models have ignored pre-treatment viral load data hence utilizing only post-treatment viral load data. In this study we utilize pre-treatment viral load data to estimate parameters of the HIV dynamic model in the absence of therapy. By employing hierarchical Bayesian parameter estimation approach, we were able to get reasonably robust estimates of the model parameters. Using simulated data, the parameter estimation was done at both the individual and population levels with the implementation carried out via Markov Chain Monte Carlo methods.","PeriodicalId":7194,"journal":{"name":"Advanced Studies in Biology","volume":"90 1","pages":"217-232"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchihal Bayesian parameter estimation for HIV dynamic models\",\"authors\":\"Mokaedi V. Lekgari\",\"doi\":\"10.12988/ASB.2015.517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most studies on parameter estimation for HIV dynamic models have ignored pre-treatment viral load data hence utilizing only post-treatment viral load data. In this study we utilize pre-treatment viral load data to estimate parameters of the HIV dynamic model in the absence of therapy. By employing hierarchical Bayesian parameter estimation approach, we were able to get reasonably robust estimates of the model parameters. Using simulated data, the parameter estimation was done at both the individual and population levels with the implementation carried out via Markov Chain Monte Carlo methods.\",\"PeriodicalId\":7194,\"journal\":{\"name\":\"Advanced Studies in Biology\",\"volume\":\"90 1\",\"pages\":\"217-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Studies in Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/ASB.2015.517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Studies in Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/ASB.2015.517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大多数关于HIV动态模型参数估计的研究都忽略了治疗前的病毒载量数据,因此只使用治疗后的病毒载量数据。在这项研究中,我们利用治疗前的病毒载量数据来估计在没有治疗的情况下HIV动态模型的参数。通过采用层次贝叶斯参数估计方法,我们能够得到合理的模型参数鲁棒估计。利用模拟数据,在个体和总体水平上进行参数估计,并通过马尔可夫链蒙特卡罗方法实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchihal Bayesian parameter estimation for HIV dynamic models
Most studies on parameter estimation for HIV dynamic models have ignored pre-treatment viral load data hence utilizing only post-treatment viral load data. In this study we utilize pre-treatment viral load data to estimate parameters of the HIV dynamic model in the absence of therapy. By employing hierarchical Bayesian parameter estimation approach, we were able to get reasonably robust estimates of the model parameters. Using simulated data, the parameter estimation was done at both the individual and population levels with the implementation carried out via Markov Chain Monte Carlo methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信