{"title":"快速计算任意高阶相关勒让德函数的正弦/余弦级数系数","authors":"T. Fukushima","doi":"10.1515/jogs-2018-0017","DOIUrl":null,"url":null,"abstract":"Abstract In order to accelerate the spherical/spheroidal harmonic synthesis of any function, we developed a new recursive method to compute the sine/cosine series coefficient of the 4π fully- and Schmidt quasi-normalized associated Legendre functions. The key of the method is a set of increasing-degree/order mixed-wavenumber two to four-term recurrence formulas to compute the diagonal terms. They are used in preparing the seed values of the decreasing-order fixed-degree, and fixed-wavenumber two- and three-term recurrence formulas, which are obtained by modifying the classic relations. The new method is accurate and capable to deal with an arbitrary high degree/ order/wavenumber. Also, it runs significantly faster than the previous method of ours utilizing the Wigner d function, say around 20 times more when the maximum degree exceeds 1,000.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast computation of sine/cosine series coefficients of associated Legendre function of arbitrary high degree and order\",\"authors\":\"T. Fukushima\",\"doi\":\"10.1515/jogs-2018-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to accelerate the spherical/spheroidal harmonic synthesis of any function, we developed a new recursive method to compute the sine/cosine series coefficient of the 4π fully- and Schmidt quasi-normalized associated Legendre functions. The key of the method is a set of increasing-degree/order mixed-wavenumber two to four-term recurrence formulas to compute the diagonal terms. They are used in preparing the seed values of the decreasing-order fixed-degree, and fixed-wavenumber two- and three-term recurrence formulas, which are obtained by modifying the classic relations. The new method is accurate and capable to deal with an arbitrary high degree/ order/wavenumber. Also, it runs significantly faster than the previous method of ours utilizing the Wigner d function, say around 20 times more when the maximum degree exceeds 1,000.\",\"PeriodicalId\":44569,\"journal\":{\"name\":\"Journal of Geodetic Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodetic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jogs-2018-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2018-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Fast computation of sine/cosine series coefficients of associated Legendre function of arbitrary high degree and order
Abstract In order to accelerate the spherical/spheroidal harmonic synthesis of any function, we developed a new recursive method to compute the sine/cosine series coefficient of the 4π fully- and Schmidt quasi-normalized associated Legendre functions. The key of the method is a set of increasing-degree/order mixed-wavenumber two to four-term recurrence formulas to compute the diagonal terms. They are used in preparing the seed values of the decreasing-order fixed-degree, and fixed-wavenumber two- and three-term recurrence formulas, which are obtained by modifying the classic relations. The new method is accurate and capable to deal with an arbitrary high degree/ order/wavenumber. Also, it runs significantly faster than the previous method of ours utilizing the Wigner d function, say around 20 times more when the maximum degree exceeds 1,000.