T. Tanaka, H. Kino, K. Kiyoyama, H. Ohno, M. Koyanagi
{"title":"采用后置后置三维集成技术的三维堆叠可重构自旋逻辑芯片的研制","authors":"T. Tanaka, H. Kino, K. Kiyoyama, H. Ohno, M. Koyanagi","doi":"10.1109/IITC.2013.6615594","DOIUrl":null,"url":null,"abstract":"A novel 3D-stacked reconfigurable spin logic chip has been successfully developed to overcome drawbacks of conventional reconfigurable LSIs. Two reconfigurable spin logic chips were carefully designed and successfully stacked using via-last backside-via technology. The fastest write speed of 5 ns was obtained in the on-chip SPRAM circuits. In order to achieve higher performance reconfigurable LSIs, parallel reconfiguration was realized with the stacked reconfigurable spin logic chips. Both via-last backside-via 3D integration and ultrafast on-chip SPRAM will bring a new reconfigurable LSI world.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"8 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of 3D-stacked reconfigurable spin logic chip using via-last backside-via 3D integration technology\",\"authors\":\"T. Tanaka, H. Kino, K. Kiyoyama, H. Ohno, M. Koyanagi\",\"doi\":\"10.1109/IITC.2013.6615594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel 3D-stacked reconfigurable spin logic chip has been successfully developed to overcome drawbacks of conventional reconfigurable LSIs. Two reconfigurable spin logic chips were carefully designed and successfully stacked using via-last backside-via technology. The fastest write speed of 5 ns was obtained in the on-chip SPRAM circuits. In order to achieve higher performance reconfigurable LSIs, parallel reconfiguration was realized with the stacked reconfigurable spin logic chips. Both via-last backside-via 3D integration and ultrafast on-chip SPRAM will bring a new reconfigurable LSI world.\",\"PeriodicalId\":6377,\"journal\":{\"name\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"volume\":\"8 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2013.6615594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Interconnect Technology Conference - IITC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2013.6615594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of 3D-stacked reconfigurable spin logic chip using via-last backside-via 3D integration technology
A novel 3D-stacked reconfigurable spin logic chip has been successfully developed to overcome drawbacks of conventional reconfigurable LSIs. Two reconfigurable spin logic chips were carefully designed and successfully stacked using via-last backside-via technology. The fastest write speed of 5 ns was obtained in the on-chip SPRAM circuits. In order to achieve higher performance reconfigurable LSIs, parallel reconfiguration was realized with the stacked reconfigurable spin logic chips. Both via-last backside-via 3D integration and ultrafast on-chip SPRAM will bring a new reconfigurable LSI world.