微通道中受限圆柱体粘弹性流动的数值模拟

S. Lei, K. Nolan
{"title":"微通道中受限圆柱体粘弹性流动的数值模拟","authors":"S. Lei, K. Nolan","doi":"10.1109/ITHERM.2014.6892304","DOIUrl":null,"url":null,"abstract":"In this study, several 2D numerical simulations on a non-Newtonian flow over a confined cylinder placed in a rectangular microchannel are carried out at different Weissenberg (Wi) numbers. In particular, the Oldroyd-B model implemented in open source code OpenFOAM is employed to capture the three basic ingredients of polymer rheology, viz., anisotropy, elasticity and relaxation. Numerical calculations indicate that the flow structure particularly in the downstream is influenced by the presence of the cylinder. As Wi or the channel height increases, the velocity-recovery length required increases. It is observed that both the pressure drop across the channel and the elastic stress magnitude in the downstream grow exponentially with Wi. However it is interesting to observe that recirculation zones appear at Wi = 1.2 with a modest increase in pressure drop compared to Newtonian flow.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"41 1","pages":"369-373"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical simulations of viscoelastic flow over a confined cylinder in microchannels\",\"authors\":\"S. Lei, K. Nolan\",\"doi\":\"10.1109/ITHERM.2014.6892304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, several 2D numerical simulations on a non-Newtonian flow over a confined cylinder placed in a rectangular microchannel are carried out at different Weissenberg (Wi) numbers. In particular, the Oldroyd-B model implemented in open source code OpenFOAM is employed to capture the three basic ingredients of polymer rheology, viz., anisotropy, elasticity and relaxation. Numerical calculations indicate that the flow structure particularly in the downstream is influenced by the presence of the cylinder. As Wi or the channel height increases, the velocity-recovery length required increases. It is observed that both the pressure drop across the channel and the elastic stress magnitude in the downstream grow exponentially with Wi. However it is interesting to observe that recirculation zones appear at Wi = 1.2 with a modest increase in pressure drop compared to Newtonian flow.\",\"PeriodicalId\":12453,\"journal\":{\"name\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"41 1\",\"pages\":\"369-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2014.6892304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项研究中,在不同的Weissenberg (Wi)数下,对放置在矩形微通道中的受限圆柱体进行了非牛顿流动的二维数值模拟。特别是利用开放源代码OpenFOAM实现的Oldroyd-B模型来捕捉聚合物流变学的三个基本成分,即各向异性、弹性和弛豫。数值计算表明,筒体的存在对流场结构尤其是下游流场结构产生了影响。随着Wi或通道高度的增加,所需的速度恢复长度也会增加。观察到,通道上的压降和下游的弹性应力大小都随Wi呈指数增长。然而,有趣的是,与牛顿流相比,再循环区出现在Wi = 1.2时,压降略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulations of viscoelastic flow over a confined cylinder in microchannels
In this study, several 2D numerical simulations on a non-Newtonian flow over a confined cylinder placed in a rectangular microchannel are carried out at different Weissenberg (Wi) numbers. In particular, the Oldroyd-B model implemented in open source code OpenFOAM is employed to capture the three basic ingredients of polymer rheology, viz., anisotropy, elasticity and relaxation. Numerical calculations indicate that the flow structure particularly in the downstream is influenced by the presence of the cylinder. As Wi or the channel height increases, the velocity-recovery length required increases. It is observed that both the pressure drop across the channel and the elastic stress magnitude in the downstream grow exponentially with Wi. However it is interesting to observe that recirculation zones appear at Wi = 1.2 with a modest increase in pressure drop compared to Newtonian flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信