{"title":"从非对称3秩关联方案构造非交换8秩关联方案对","authors":"A. Hanaki, Masayoshi Yoshikawa","doi":"10.5802/alco.167","DOIUrl":null,"url":null,"abstract":"We construct a pair of non-commutative rank 8 association schemes from a rank 3 non-symmetric association scheme. For the pair, two association schemes have the same character table but different Frobenius-Schur indicators. This situation is similar to the pair of the dihedral group and the quaternion group of order 8. We also determine the structures of adjacency algebras of them over the rational number field.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A construction of pairs of non-commutative rank 8 association schemes from non-symmetric rank 3 association schemes\",\"authors\":\"A. Hanaki, Masayoshi Yoshikawa\",\"doi\":\"10.5802/alco.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a pair of non-commutative rank 8 association schemes from a rank 3 non-symmetric association scheme. For the pair, two association schemes have the same character table but different Frobenius-Schur indicators. This situation is similar to the pair of the dihedral group and the quaternion group of order 8. We also determine the structures of adjacency algebras of them over the rational number field.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A construction of pairs of non-commutative rank 8 association schemes from non-symmetric rank 3 association schemes
We construct a pair of non-commutative rank 8 association schemes from a rank 3 non-symmetric association scheme. For the pair, two association schemes have the same character table but different Frobenius-Schur indicators. This situation is similar to the pair of the dihedral group and the quaternion group of order 8. We also determine the structures of adjacency algebras of them over the rational number field.