同时检测多个面部动作单元的lp范数MTMKL框架

Xiao Zhang, M. Mahoor, S. Mavadati, J. Cohn
{"title":"同时检测多个面部动作单元的lp范数MTMKL框架","authors":"Xiao Zhang, M. Mahoor, S. Mavadati, J. Cohn","doi":"10.1109/WACV.2014.6835735","DOIUrl":null,"url":null,"abstract":"Facial action unit (AU) detection is a challenging topic in computer vision and pattern recognition. Most existing approaches design classifiers to detect AUs individually or AU combinations without considering the intrinsic relations among AUs. This paper presents a novel method, lp-norm multi-task multiple kernel learning (MTMKL), that jointly learns the classifiers for detecting the absence and presence of multiple AUs. lp-norm MTMKL is an extension of the regularized multi-task learning, which learns shared kernels from a given set of base kernels among all the tasks within Support Vector Machines (SVM). Our approach has several advantages over existing methods: (1) AU detection work is transformed to a MTL problem, where given a specific frame, multiple AUs are detected simultaneously by exploiting their inter-relations; (2) lp-norm multiple kernel learning is applied to increase the discriminant power of classifiers. Our experimental results on the CK+ and DISFA databases show that the proposed method outperforms the state-of-the-art methods for AU detection.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"17 1","pages":"1104-1111"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"A lp-norm MTMKL framework for simultaneous detection of multiple facial action units\",\"authors\":\"Xiao Zhang, M. Mahoor, S. Mavadati, J. Cohn\",\"doi\":\"10.1109/WACV.2014.6835735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial action unit (AU) detection is a challenging topic in computer vision and pattern recognition. Most existing approaches design classifiers to detect AUs individually or AU combinations without considering the intrinsic relations among AUs. This paper presents a novel method, lp-norm multi-task multiple kernel learning (MTMKL), that jointly learns the classifiers for detecting the absence and presence of multiple AUs. lp-norm MTMKL is an extension of the regularized multi-task learning, which learns shared kernels from a given set of base kernels among all the tasks within Support Vector Machines (SVM). Our approach has several advantages over existing methods: (1) AU detection work is transformed to a MTL problem, where given a specific frame, multiple AUs are detected simultaneously by exploiting their inter-relations; (2) lp-norm multiple kernel learning is applied to increase the discriminant power of classifiers. Our experimental results on the CK+ and DISFA databases show that the proposed method outperforms the state-of-the-art methods for AU detection.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"17 1\",\"pages\":\"1104-1111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6835735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6835735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

面部动作单元(AU)检测是计算机视觉和模式识别领域的一个具有挑战性的课题。大多数现有方法设计的分类器都是单独检测AU或组合检测AU,而没有考虑AU之间的内在关系。本文提出了一种新的方法——低范数多任务多核学习(MTMKL),该方法联合学习分类器来检测多个目标的存在和不存在。lp-norm MTMKL是正则化多任务学习的扩展,它从支持向量机(SVM)中所有任务的给定基核集合中学习共享核。与现有方法相比,我们的方法具有以下几个优点:(1)将AU检测工作转化为MTL问题,在给定特定框架的情况下,通过利用它们之间的相互关系同时检测多个AU;(2)采用低范数多核学习提高分类器的判别能力。我们在CK+和DISFA数据库上的实验结果表明,所提出的方法优于最先进的AU检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lp-norm MTMKL framework for simultaneous detection of multiple facial action units
Facial action unit (AU) detection is a challenging topic in computer vision and pattern recognition. Most existing approaches design classifiers to detect AUs individually or AU combinations without considering the intrinsic relations among AUs. This paper presents a novel method, lp-norm multi-task multiple kernel learning (MTMKL), that jointly learns the classifiers for detecting the absence and presence of multiple AUs. lp-norm MTMKL is an extension of the regularized multi-task learning, which learns shared kernels from a given set of base kernels among all the tasks within Support Vector Machines (SVM). Our approach has several advantages over existing methods: (1) AU detection work is transformed to a MTL problem, where given a specific frame, multiple AUs are detected simultaneously by exploiting their inter-relations; (2) lp-norm multiple kernel learning is applied to increase the discriminant power of classifiers. Our experimental results on the CK+ and DISFA databases show that the proposed method outperforms the state-of-the-art methods for AU detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信