等通道角压Cu-Ag纳米复合材料的力学和电学性能

Kyu-Jin Cho, S. Hong
{"title":"等通道角压Cu-Ag纳米复合材料的力学和电学性能","authors":"Kyu-Jin Cho, S. Hong","doi":"10.1109/INEC.2010.5424899","DOIUrl":null,"url":null,"abstract":"Equal channel angular pressing was carried out on Cu-Ag composites at room temperature. ECAPed Cu-Ag exhibited ultrafine structure with the shape and distribution of Ag phase dependent on the processing routes. In route A, the initial lamellae of Ag phase were elongated along the shear direction and developed into filaments whereas the initial lamellae became finer by fragmentation with no pronounced change of the shape in route Bc. The hardness of ECAPed Cu-Ag is greater than that of ECAPed Cu. The higher hardness in Cu-Ag is ascribed to the more effective matrix strengthening due to the dislocation storage at the interface and the precipitation hardening. The hardness of ECAPed Cu-Ag was lower than the drawn Cu-Ag at the same deformation strain because of the less effective refinement and elongation of the two-phase filamentary microstructure. The application of ECAP in Cu-Ag was found to be effective in the modification of structure, shape and distribution of phases in composite and the increase of the strength.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"8 1","pages":"1291-1292"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and electrical properties of Cu-Ag nanocomposites processed by equal channel angular pressing (ECAP)\",\"authors\":\"Kyu-Jin Cho, S. Hong\",\"doi\":\"10.1109/INEC.2010.5424899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Equal channel angular pressing was carried out on Cu-Ag composites at room temperature. ECAPed Cu-Ag exhibited ultrafine structure with the shape and distribution of Ag phase dependent on the processing routes. In route A, the initial lamellae of Ag phase were elongated along the shear direction and developed into filaments whereas the initial lamellae became finer by fragmentation with no pronounced change of the shape in route Bc. The hardness of ECAPed Cu-Ag is greater than that of ECAPed Cu. The higher hardness in Cu-Ag is ascribed to the more effective matrix strengthening due to the dislocation storage at the interface and the precipitation hardening. The hardness of ECAPed Cu-Ag was lower than the drawn Cu-Ag at the same deformation strain because of the less effective refinement and elongation of the two-phase filamentary microstructure. The application of ECAP in Cu-Ag was found to be effective in the modification of structure, shape and distribution of phases in composite and the increase of the strength.\",\"PeriodicalId\":6390,\"journal\":{\"name\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"volume\":\"8 1\",\"pages\":\"1291-1292\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INEC.2010.5424899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5424899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在室温条件下对Cu-Ag复合材料进行了等通道角挤压。eced Cu-Ag呈现超细结构,Ag相的形状和分布随工艺路线的不同而不同。在A路线中,Ag相的初始薄片沿剪切方向被拉长并发育成细丝,而在Bc路线中,初始薄片被破碎而变得更细,形状没有明显变化。eced Cu- ag的硬度大于eced Cu的硬度。Cu-Ag中较高的硬度是由于界面处的位错储存和析出硬化使基体得到了更有效的强化。在相同变形应变下,eced Cu-Ag的硬度低于拉制Cu-Ag,这是由于两相丝状组织细化伸长率较低。在Cu-Ag复合材料中应用ECAP可以有效地改变复合材料的结构、形态和相分布,提高复合材料的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical and electrical properties of Cu-Ag nanocomposites processed by equal channel angular pressing (ECAP)
Equal channel angular pressing was carried out on Cu-Ag composites at room temperature. ECAPed Cu-Ag exhibited ultrafine structure with the shape and distribution of Ag phase dependent on the processing routes. In route A, the initial lamellae of Ag phase were elongated along the shear direction and developed into filaments whereas the initial lamellae became finer by fragmentation with no pronounced change of the shape in route Bc. The hardness of ECAPed Cu-Ag is greater than that of ECAPed Cu. The higher hardness in Cu-Ag is ascribed to the more effective matrix strengthening due to the dislocation storage at the interface and the precipitation hardening. The hardness of ECAPed Cu-Ag was lower than the drawn Cu-Ag at the same deformation strain because of the less effective refinement and elongation of the two-phase filamentary microstructure. The application of ECAP in Cu-Ag was found to be effective in the modification of structure, shape and distribution of phases in composite and the increase of the strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信