基于多元海表温度的含噪语音信号瞬时基音估计

M. I. Molla, Mahboob Qaosar, K. Hirose
{"title":"基于多元海表温度的含噪语音信号瞬时基音估计","authors":"M. I. Molla, Mahboob Qaosar, K. Hirose","doi":"10.1109/ISCAS.2016.7527354","DOIUrl":null,"url":null,"abstract":"This paper presents an instantaneous pitch estimation method based on data adaptive time domain filtering and multivariate synchrosqueezing transform (SST). The filtering approach is implemented with bivariate empirical mode decomposition (bEMD) using white Gaussian noise (wGn) as the reference signal. The bEMD decomposes speech and wGn together into a finite set of intrinsic mode functions (IMFs). The log-energy distribution of wGn's IMFs is employed to determine the threshold used in filtering. The IMFs of speech signal selected by such pre-filtering method is used to construct time-frequency representation (TFR) with multivariate SST. The frequency components are properly localized in the obtained TFR. Spatial filtering and post-processing are applied to TFR prior to estimate the instantaneous pitch. The experimental results illustrate the noise robustness and superiority of the proposed algorithm.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"30 1","pages":"770-773"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instantaneous pitch estimation of noisy speech signal with multivariate SST\",\"authors\":\"M. I. Molla, Mahboob Qaosar, K. Hirose\",\"doi\":\"10.1109/ISCAS.2016.7527354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an instantaneous pitch estimation method based on data adaptive time domain filtering and multivariate synchrosqueezing transform (SST). The filtering approach is implemented with bivariate empirical mode decomposition (bEMD) using white Gaussian noise (wGn) as the reference signal. The bEMD decomposes speech and wGn together into a finite set of intrinsic mode functions (IMFs). The log-energy distribution of wGn's IMFs is employed to determine the threshold used in filtering. The IMFs of speech signal selected by such pre-filtering method is used to construct time-frequency representation (TFR) with multivariate SST. The frequency components are properly localized in the obtained TFR. Spatial filtering and post-processing are applied to TFR prior to estimate the instantaneous pitch. The experimental results illustrate the noise robustness and superiority of the proposed algorithm.\",\"PeriodicalId\":6546,\"journal\":{\"name\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"30 1\",\"pages\":\"770-773\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2016.7527354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7527354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于数据自适应时域滤波和多元同步压缩变换(SST)的瞬时基音估计方法。该滤波方法采用二元经验模态分解(bEMD),以高斯白噪声(wGn)作为参考信号。bEMD将语音和wGn一起分解成有限的一组固有模态函数(IMFs)。利用wGn的imf的对数能量分布来确定用于滤波的阈值。通过这种预滤波方法选择语音信号的imf,利用多元SST构造时频表示(TFR)。频率分量在得到的TFR中被适当地定位。在估计瞬时基音之前,对TFR进行了空间滤波和后处理。实验结果表明了该算法对噪声的鲁棒性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instantaneous pitch estimation of noisy speech signal with multivariate SST
This paper presents an instantaneous pitch estimation method based on data adaptive time domain filtering and multivariate synchrosqueezing transform (SST). The filtering approach is implemented with bivariate empirical mode decomposition (bEMD) using white Gaussian noise (wGn) as the reference signal. The bEMD decomposes speech and wGn together into a finite set of intrinsic mode functions (IMFs). The log-energy distribution of wGn's IMFs is employed to determine the threshold used in filtering. The IMFs of speech signal selected by such pre-filtering method is used to construct time-frequency representation (TFR) with multivariate SST. The frequency components are properly localized in the obtained TFR. Spatial filtering and post-processing are applied to TFR prior to estimate the instantaneous pitch. The experimental results illustrate the noise robustness and superiority of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信