基于新型顺序交易的信用卡欺诈交易预测:光梯度增强算法与隔离森林算法的比较

P. R. Reddy, A. S. Kumar
{"title":"基于新型顺序交易的信用卡欺诈交易预测:光梯度增强算法与隔离森林算法的比较","authors":"P. R. Reddy, A. S. Kumar","doi":"10.1109/iciptm54933.2022.9754211","DOIUrl":null,"url":null,"abstract":"The Aim of the work is to predict the accuracy of credit card fraudulent detection using Sequential transactions by comparing Light Gradient Booster over Isolation Forest. Light Gradient Booster Algorithm per sample size of 10 and Isolation Forest (IF) with sample size of 10 was repeated for identifying the accuracy percentage of credit card fraudulent transactions. The sigmoid function used in the Light Gradient Booster Algorithm maps the values between 0 and 1. Light Gradient Booster Algorithm has better accuracy (91.6%) when compared to Isolation Forest (81.8%). There is a statistical significant difference between Light Gradient Booster Algorithm and Isolation Forest with p=0.0001 (p<0.05) based on 2-tailed analysis. Light Gradient Booster Algorithm shows a better accuracy percentage of credit card fraudulent transactions than Isolation Forest.","PeriodicalId":6810,"journal":{"name":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","volume":"32 1","pages":"563-567"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Credit Card Fraudulent Transactions Prediction Using Novel Sequential Transactions by Comparing Light Gradient Booster Algorithm Over Isolation Forest Algorithm\",\"authors\":\"P. R. Reddy, A. S. Kumar\",\"doi\":\"10.1109/iciptm54933.2022.9754211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Aim of the work is to predict the accuracy of credit card fraudulent detection using Sequential transactions by comparing Light Gradient Booster over Isolation Forest. Light Gradient Booster Algorithm per sample size of 10 and Isolation Forest (IF) with sample size of 10 was repeated for identifying the accuracy percentage of credit card fraudulent transactions. The sigmoid function used in the Light Gradient Booster Algorithm maps the values between 0 and 1. Light Gradient Booster Algorithm has better accuracy (91.6%) when compared to Isolation Forest (81.8%). There is a statistical significant difference between Light Gradient Booster Algorithm and Isolation Forest with p=0.0001 (p<0.05) based on 2-tailed analysis. Light Gradient Booster Algorithm shows a better accuracy percentage of credit card fraudulent transactions than Isolation Forest.\",\"PeriodicalId\":6810,\"journal\":{\"name\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"volume\":\"32 1\",\"pages\":\"563-567\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iciptm54933.2022.9754211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iciptm54933.2022.9754211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是通过比较光梯度增强器和隔离森林来预测使用顺序交易的信用卡欺诈检测的准确性。每个样本大小为10的光梯度增强算法和样本大小为10的隔离森林(IF)进行重复,以确定信用卡欺诈交易的准确性百分比。光梯度增强算法中使用的sigmoid函数映射0到1之间的值。与隔离森林(81.8%)相比,光梯度增强算法(Light Gradient Booster Algorithm)的准确率(91.6%)更高。基于双尾分析,光梯度增强算法与隔离森林之间的差异有统计学意义,p=0.0001 (p<0.05)。与隔离森林相比,光梯度增强算法对信用卡欺诈交易的准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Credit Card Fraudulent Transactions Prediction Using Novel Sequential Transactions by Comparing Light Gradient Booster Algorithm Over Isolation Forest Algorithm
The Aim of the work is to predict the accuracy of credit card fraudulent detection using Sequential transactions by comparing Light Gradient Booster over Isolation Forest. Light Gradient Booster Algorithm per sample size of 10 and Isolation Forest (IF) with sample size of 10 was repeated for identifying the accuracy percentage of credit card fraudulent transactions. The sigmoid function used in the Light Gradient Booster Algorithm maps the values between 0 and 1. Light Gradient Booster Algorithm has better accuracy (91.6%) when compared to Isolation Forest (81.8%). There is a statistical significant difference between Light Gradient Booster Algorithm and Isolation Forest with p=0.0001 (p<0.05) based on 2-tailed analysis. Light Gradient Booster Algorithm shows a better accuracy percentage of credit card fraudulent transactions than Isolation Forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信