单位随机设计下低阶相互作用的邻域干扰研究

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mayleen Cortez, Matthew Eichhorn, C. Yu
{"title":"单位随机设计下低阶相互作用的邻域干扰研究","authors":"Mayleen Cortez, Matthew Eichhorn, C. Yu","doi":"10.48550/arXiv.2208.05553","DOIUrl":null,"url":null,"abstract":"Abstract Network interference, where the outcome of an individual is affected by the treatment assignment of those in their social network, is pervasive in real-world settings. However, it poses a challenge to estimating causal effects. We consider the task of estimating the total treatment effect (TTE), or the difference between the average outcomes of the population when everyone is treated versus when no one is, under network interference. Under a Bernoulli randomized design, we provide an unbiased estimator for the TTE when network interference effects are constrained to low-order interactions among neighbors of an individual. We make no assumptions on the graph other than bounded degree, allowing for well-connected networks that may not be easily clustered. We derive a bound on the variance of our estimator and show in simulated experiments that it performs well compared with standard estimators for the TTE. We also derive a minimax lower bound on the mean squared error of our estimator, which suggests that the difficulty of estimation can be characterized by the degree of interactions in the potential outcomes model. We also prove that our estimator is asymptotically normal under boundedness conditions on the network degree and potential outcomes model. Central to our contribution is a new framework for balancing model flexibility and statistical complexity as captured by this low-order interactions structure.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"52 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exploiting neighborhood interference with low-order interactions under unit randomized design\",\"authors\":\"Mayleen Cortez, Matthew Eichhorn, C. Yu\",\"doi\":\"10.48550/arXiv.2208.05553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Network interference, where the outcome of an individual is affected by the treatment assignment of those in their social network, is pervasive in real-world settings. However, it poses a challenge to estimating causal effects. We consider the task of estimating the total treatment effect (TTE), or the difference between the average outcomes of the population when everyone is treated versus when no one is, under network interference. Under a Bernoulli randomized design, we provide an unbiased estimator for the TTE when network interference effects are constrained to low-order interactions among neighbors of an individual. We make no assumptions on the graph other than bounded degree, allowing for well-connected networks that may not be easily clustered. We derive a bound on the variance of our estimator and show in simulated experiments that it performs well compared with standard estimators for the TTE. We also derive a minimax lower bound on the mean squared error of our estimator, which suggests that the difficulty of estimation can be characterized by the degree of interactions in the potential outcomes model. We also prove that our estimator is asymptotically normal under boundedness conditions on the network degree and potential outcomes model. Central to our contribution is a new framework for balancing model flexibility and statistical complexity as captured by this low-order interactions structure.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.05553\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.05553","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 8

摘要

网络干扰是指个体的行为结果受到其社会网络中其他人的待遇分配的影响,这种现象在现实世界中普遍存在。然而,它对估计因果关系提出了挑战。我们考虑在网络干扰下估计总治疗效果(TTE)的任务,或每个人都接受治疗与没有人接受治疗时人群平均结果之间的差异。在伯努利随机化设计下,我们给出了当网络干扰效应被限制为个体之间的低阶相互作用时,TTE的无偏估计量。除了有界度,我们没有对图做任何假设,考虑到连接良好的网络可能不容易聚类。我们推导了估计器方差的一个界,并在模拟实验中表明,与TTE的标准估计器相比,它的性能很好。我们还推导了估计器均方误差的最小极大下界,这表明估计的难度可以通过潜在结果模型中的相互作用程度来表征。我们还证明了在网络度和潜在结果模型的有界条件下我们的估计量是渐近正态的。我们贡献的核心是平衡模型灵活性和统计复杂性的新框架,正如这个低阶交互结构所捕获的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting neighborhood interference with low-order interactions under unit randomized design
Abstract Network interference, where the outcome of an individual is affected by the treatment assignment of those in their social network, is pervasive in real-world settings. However, it poses a challenge to estimating causal effects. We consider the task of estimating the total treatment effect (TTE), or the difference between the average outcomes of the population when everyone is treated versus when no one is, under network interference. Under a Bernoulli randomized design, we provide an unbiased estimator for the TTE when network interference effects are constrained to low-order interactions among neighbors of an individual. We make no assumptions on the graph other than bounded degree, allowing for well-connected networks that may not be easily clustered. We derive a bound on the variance of our estimator and show in simulated experiments that it performs well compared with standard estimators for the TTE. We also derive a minimax lower bound on the mean squared error of our estimator, which suggests that the difficulty of estimation can be characterized by the degree of interactions in the potential outcomes model. We also prove that our estimator is asymptotically normal under boundedness conditions on the network degree and potential outcomes model. Central to our contribution is a new framework for balancing model flexibility and statistical complexity as captured by this low-order interactions structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信