高阶拟线性抛物型方程的边界爆破结构

V. Galaktionov, A. Shishkov
{"title":"高阶拟线性抛物型方程的边界爆破结构","authors":"V. Galaktionov, A. Shishkov","doi":"10.1098/rspa.2004.1297","DOIUrl":null,"url":null,"abstract":"Singularity formation phenomena for 2mth–order quasilinear parabolic equations are studied by using energy estimates related to Saint–Venant's principle. Sharp estimates of propagation of singularities generated by boundary global and regional blow-up regimes are established.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"16 1","pages":"3299 - 3325"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Structure of boundary blow-up for higher-order quasilinear parabolic equations\",\"authors\":\"V. Galaktionov, A. Shishkov\",\"doi\":\"10.1098/rspa.2004.1297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singularity formation phenomena for 2mth–order quasilinear parabolic equations are studied by using energy estimates related to Saint–Venant's principle. Sharp estimates of propagation of singularities generated by boundary global and regional blow-up regimes are established.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"16 1\",\"pages\":\"3299 - 3325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

利用与圣维南原理相关的能量估计,研究了二阶拟线性抛物方程的奇点形成现象。建立了由边界、全局和区域爆炸机制产生的奇点传播的尖锐估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure of boundary blow-up for higher-order quasilinear parabolic equations
Singularity formation phenomena for 2mth–order quasilinear parabolic equations are studied by using energy estimates related to Saint–Venant's principle. Sharp estimates of propagation of singularities generated by boundary global and regional blow-up regimes are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信