分数欧拉特征的分类,Jones-Wenzl投影和3d符号

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2012-03-03 DOI:10.4171/QT/28
I. Frenkel, C. Stroppel, Joshua Sussan
{"title":"分数欧拉特征的分类,Jones-Wenzl投影和3d符号","authors":"I. Frenkel, C. Stroppel, Joshua Sussan","doi":"10.4171/QT/28","DOIUrl":null,"url":null,"abstract":"We study the representation theory of the smallest quantum group and its categori- fication. The first part of the paper contains an easy visualization of the3j -symbols in terms of weighted signed line arrangements in a fixed triangle and new binomial expressions for the 3j -symbols. All these formulas are realized as graded Euler characteristics. The3j -symbols appear as new generalizations of Kazhdan-Lusztig polynomials. A crucial result of the paper is that complete intersection rings can be employed to obtain rational Euler characteristics, hence to categorify rational quantum numbers. This is the main tool for our categorification of the Jones-Wenzl projector, ‚-networks and tetrahedron net- works. Networks and their evaluations play an important role in the Turaev-Viro construction of 3-manifold invariants. We categorify these evaluations by Ext-algebras of certain simple Harish-Chandra bimodules. The relevance of this construction to categorified colored Jones invariants and invariants of3-manifolds will be studied in detail in subsequent papers.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"149 1","pages":"181-253"},"PeriodicalIF":1.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Categorifying fractional Euler characteristics, Jones–Wenzl projectors and 3j-symbols\",\"authors\":\"I. Frenkel, C. Stroppel, Joshua Sussan\",\"doi\":\"10.4171/QT/28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the representation theory of the smallest quantum group and its categori- fication. The first part of the paper contains an easy visualization of the3j -symbols in terms of weighted signed line arrangements in a fixed triangle and new binomial expressions for the 3j -symbols. All these formulas are realized as graded Euler characteristics. The3j -symbols appear as new generalizations of Kazhdan-Lusztig polynomials. A crucial result of the paper is that complete intersection rings can be employed to obtain rational Euler characteristics, hence to categorify rational quantum numbers. This is the main tool for our categorification of the Jones-Wenzl projector, ‚-networks and tetrahedron net- works. Networks and their evaluations play an important role in the Turaev-Viro construction of 3-manifold invariants. We categorify these evaluations by Ext-algebras of certain simple Harish-Chandra bimodules. The relevance of this construction to categorified colored Jones invariants and invariants of3-manifolds will be studied in detail in subsequent papers.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"149 1\",\"pages\":\"181-253\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/28\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/28","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 54

摘要

研究了最小量子群的表示理论及其分类。本文的第一部分包含了3j -符号在固定三角形中的加权符号线排列的简单可视化和3j -符号的新的二项式表达式。所有这些公式都被实现为逐级欧拉特征。3j符号作为Kazhdan-Lusztig多项式的新推广出现。本文的一个重要结果是利用完全交环可以得到有理数欧拉特征,从而对有理数进行分类。这是我们对Jones-Wenzl投影仪、网络和四面体网络进行分类的主要工具。网络及其评价在3流形不变量的Turaev-Viro构造中起着重要的作用。我们用一些简单Harish-Chandra双模的ext -代数对这些评价进行了分类。这种构造与分类有色琼斯不变量和3-流形不变量的相关性将在后续文章中详细研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorifying fractional Euler characteristics, Jones–Wenzl projectors and 3j-symbols
We study the representation theory of the smallest quantum group and its categori- fication. The first part of the paper contains an easy visualization of the3j -symbols in terms of weighted signed line arrangements in a fixed triangle and new binomial expressions for the 3j -symbols. All these formulas are realized as graded Euler characteristics. The3j -symbols appear as new generalizations of Kazhdan-Lusztig polynomials. A crucial result of the paper is that complete intersection rings can be employed to obtain rational Euler characteristics, hence to categorify rational quantum numbers. This is the main tool for our categorification of the Jones-Wenzl projector, ‚-networks and tetrahedron net- works. Networks and their evaluations play an important role in the Turaev-Viro construction of 3-manifold invariants. We categorify these evaluations by Ext-algebras of certain simple Harish-Chandra bimodules. The relevance of this construction to categorified colored Jones invariants and invariants of3-manifolds will be studied in detail in subsequent papers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信