{"title":"基于深度LSTM网络的在线视觉机器人跟踪与识别","authors":"Hafez Farazi, Sven Behnke","doi":"10.1109/IROS.2017.8206512","DOIUrl":null,"url":null,"abstract":"Collaborative robots working on a common task are necessary for many applications. One of the challenges for achieving collaboration in a team of robots is mutual tracking and identification. We present a novel pipeline for online vision-based detection, tracking and identification of robots with a known and identical appearance. Our method runs in realtime on the limited hardware of the observer robot. Unlike previous works addressing robot tracking and identification, we use a data-driven approach based on recurrent neural networks to learn relations between sequential inputs and outputs. We formulate the data association problem as multiple classification problems. A deep LSTM network was trained on a simulated dataset and fine-tuned on small set of real data. Experiments on two challenging datasets, one synthetic and one real, which include long-term occlusions, show promising results.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"13 1","pages":"6118-6125"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Online visual robot tracking and identification using deep LSTM networks\",\"authors\":\"Hafez Farazi, Sven Behnke\",\"doi\":\"10.1109/IROS.2017.8206512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative robots working on a common task are necessary for many applications. One of the challenges for achieving collaboration in a team of robots is mutual tracking and identification. We present a novel pipeline for online vision-based detection, tracking and identification of robots with a known and identical appearance. Our method runs in realtime on the limited hardware of the observer robot. Unlike previous works addressing robot tracking and identification, we use a data-driven approach based on recurrent neural networks to learn relations between sequential inputs and outputs. We formulate the data association problem as multiple classification problems. A deep LSTM network was trained on a simulated dataset and fine-tuned on small set of real data. Experiments on two challenging datasets, one synthetic and one real, which include long-term occlusions, show promising results.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"13 1\",\"pages\":\"6118-6125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8206512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online visual robot tracking and identification using deep LSTM networks
Collaborative robots working on a common task are necessary for many applications. One of the challenges for achieving collaboration in a team of robots is mutual tracking and identification. We present a novel pipeline for online vision-based detection, tracking and identification of robots with a known and identical appearance. Our method runs in realtime on the limited hardware of the observer robot. Unlike previous works addressing robot tracking and identification, we use a data-driven approach based on recurrent neural networks to learn relations between sequential inputs and outputs. We formulate the data association problem as multiple classification problems. A deep LSTM network was trained on a simulated dataset and fine-tuned on small set of real data. Experiments on two challenging datasets, one synthetic and one real, which include long-term occlusions, show promising results.