《自然要素》第一卷的注释。哈特霍恩和其他地方

Piotr Błaszczyk, Anna Petiurenko
{"title":"《自然要素》第一卷的注释。哈特霍恩和其他地方","authors":"Piotr Błaszczyk, Anna Petiurenko","doi":"10.24917/20809751.13.7","DOIUrl":null,"url":null,"abstract":"(Hartshorne, 2000) interprets Euclid’s Elements provides an interpretation of Euclid’s Elements in the Hilbert system of axioms, specifically propositions I.1-I.27, covering the so-called absolute geometry. We develop an alternative interpretation that explores Euclid’s practice concerning the relation greater-than. Discussing the Postulate 5, we present a model of nonEuclidean plane in which angles in a triangle sum up to π. It is a subspace of the Cartesian plane over the ordered field of hyperreal numbers R*.","PeriodicalId":33912,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Commentary to Book I of the Elements. Hartshorne and beyond\",\"authors\":\"Piotr Błaszczyk, Anna Petiurenko\",\"doi\":\"10.24917/20809751.13.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(Hartshorne, 2000) interprets Euclid’s Elements provides an interpretation of Euclid’s Elements in the Hilbert system of axioms, specifically propositions I.1-I.27, covering the so-called absolute geometry. We develop an alternative interpretation that explores Euclid’s practice concerning the relation greater-than. Discussing the Postulate 5, we present a model of nonEuclidean plane in which angles in a triangle sum up to π. It is a subspace of the Cartesian plane over the ordered field of hyperreal numbers R*.\",\"PeriodicalId\":33912,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24917/20809751.13.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24917/20809751.13.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

(Hartshorne, 2000)《欧几里得原理的解释》提供了对希尔伯特公理系统中欧几里得原理的解释,特别是命题i .1- 1。27、覆盖所谓的绝对几何。我们发展了另一种解释,探索欧几里得关于大于的关系的实践。讨论公设5,给出了一个三角形内角和等于π的非欧几里得平面模型。它是超实数R*的有序域上笛卡尔平面的一个子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commentary to Book I of the Elements. Hartshorne and beyond
(Hartshorne, 2000) interprets Euclid’s Elements provides an interpretation of Euclid’s Elements in the Hilbert system of axioms, specifically propositions I.1-I.27, covering the so-called absolute geometry. We develop an alternative interpretation that explores Euclid’s practice concerning the relation greater-than. Discussing the Postulate 5, we present a model of nonEuclidean plane in which angles in a triangle sum up to π. It is a subspace of the Cartesian plane over the ordered field of hyperreal numbers R*.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
3
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信