学习机器实现大数据分析,挑战和解决方案

A. N. Al-Masri, Manal M. Nasir
{"title":"学习机器实现大数据分析,挑战和解决方案","authors":"A. N. Al-Masri, Manal M. Nasir","doi":"10.4172/2153-0602.1000190","DOIUrl":null,"url":null,"abstract":"Big Data analytics is one of the great challenges for Learning Machine (LM) algorithms because most real-life applications involve a massive information or big data knowledge base. By contrast, an Artificial Intelligent (AI) system with a data knowledge base should be able to compute the result in an accurate and fast manner. This study focused on the challenges and solutions of using with Big Data. Data processing is a mandatory step to transform unstructured Big Data into a meaningful and optimized data set in any LM module. However, an optimized data set must be deployed to support a distributed processing and real-time application. This work also reviewed the technologies currently used in Big Data analysis and LM computation and emphasized that the viability of using different solutions for certain applications could increase LM performance. The new development, especially in cloud computing and data transaction speed, offers significant advantages to the practical use of AI applications.","PeriodicalId":15630,"journal":{"name":"Journal of Data Mining in Genomics & Proteomics","volume":"104 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Machine Implementation for Big Data Analytics, Challenges and Solutions\",\"authors\":\"A. N. Al-Masri, Manal M. Nasir\",\"doi\":\"10.4172/2153-0602.1000190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big Data analytics is one of the great challenges for Learning Machine (LM) algorithms because most real-life applications involve a massive information or big data knowledge base. By contrast, an Artificial Intelligent (AI) system with a data knowledge base should be able to compute the result in an accurate and fast manner. This study focused on the challenges and solutions of using with Big Data. Data processing is a mandatory step to transform unstructured Big Data into a meaningful and optimized data set in any LM module. However, an optimized data set must be deployed to support a distributed processing and real-time application. This work also reviewed the technologies currently used in Big Data analysis and LM computation and emphasized that the viability of using different solutions for certain applications could increase LM performance. The new development, especially in cloud computing and data transaction speed, offers significant advantages to the practical use of AI applications.\",\"PeriodicalId\":15630,\"journal\":{\"name\":\"Journal of Data Mining in Genomics & Proteomics\",\"volume\":\"104 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Data Mining in Genomics & Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2153-0602.1000190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data Mining in Genomics & Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2153-0602.1000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大数据分析是学习机(LM)算法面临的巨大挑战之一,因为大多数现实应用都涉及大量信息或大数据知识库。相比之下,具有数据知识库的人工智能(AI)系统应该能够以准确和快速的方式计算结果。本研究的重点是使用大数据的挑战和解决方案。在任何LM模块中,数据处理都是将非结构化大数据转换为有意义且优化的数据集的必要步骤。但是,必须部署优化的数据集来支持分布式处理和实时应用程序。这项工作还回顾了目前在大数据分析和LM计算中使用的技术,并强调了在某些应用中使用不同解决方案可以提高LM性能的可行性。新的发展,特别是在云计算和数据交易速度方面,为人工智能应用的实际应用提供了显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Machine Implementation for Big Data Analytics, Challenges and Solutions
Big Data analytics is one of the great challenges for Learning Machine (LM) algorithms because most real-life applications involve a massive information or big data knowledge base. By contrast, an Artificial Intelligent (AI) system with a data knowledge base should be able to compute the result in an accurate and fast manner. This study focused on the challenges and solutions of using with Big Data. Data processing is a mandatory step to transform unstructured Big Data into a meaningful and optimized data set in any LM module. However, an optimized data set must be deployed to support a distributed processing and real-time application. This work also reviewed the technologies currently used in Big Data analysis and LM computation and emphasized that the viability of using different solutions for certain applications could increase LM performance. The new development, especially in cloud computing and data transaction speed, offers significant advantages to the practical use of AI applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信