λ完备μ +$ \mu ^+$ -c的强迫公理。

Pub Date : 2022-02-03 DOI:10.1002/malq.201900020
Saharon Shelah
{"title":"λ完备μ +$ \\mu ^+$ -c的强迫公理。","authors":"Saharon Shelah","doi":"10.1002/malq.201900020","DOIUrl":null,"url":null,"abstract":"<p>We consider forcing axioms for suitable families of μ-complete <math>\n <semantics>\n <msup>\n <mi>μ</mi>\n <mo>+</mo>\n </msup>\n <annotation>$\\mu ^+$</annotation>\n </semantics></math>-c.c. forcing notions. We show that some form of the condition “<math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>p</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$p_1,p_2$</annotation>\n </semantics></math> have a <math>\n <semantics>\n <mrow>\n <msub>\n <mo>≤</mo>\n <mi>Q</mi>\n </msub>\n <mi>-</mi>\n <mi>lub</mi>\n </mrow>\n <annotation>$\\le _{{\\mathbb {Q}}}\\text{-}{\\rm lub}$</annotation>\n </semantics></math> in <math>\n <semantics>\n <mi>Q</mi>\n <annotation>${\\mathbb {Q}}$</annotation>\n </semantics></math>” is necessary. We also show some versions are really stronger than others.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forcing axioms for λ-complete \\n \\n \\n μ\\n +\\n \\n $\\\\mu ^+$\\n -c.c.\",\"authors\":\"Saharon Shelah\",\"doi\":\"10.1002/malq.201900020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider forcing axioms for suitable families of μ-complete <math>\\n <semantics>\\n <msup>\\n <mi>μ</mi>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\mu ^+$</annotation>\\n </semantics></math>-c.c. forcing notions. We show that some form of the condition “<math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>p</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>p</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$p_1,p_2$</annotation>\\n </semantics></math> have a <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>≤</mo>\\n <mi>Q</mi>\\n </msub>\\n <mi>-</mi>\\n <mi>lub</mi>\\n </mrow>\\n <annotation>$\\\\le _{{\\\\mathbb {Q}}}\\\\text{-}{\\\\rm lub}$</annotation>\\n </semantics></math> in <math>\\n <semantics>\\n <mi>Q</mi>\\n <annotation>${\\\\mathbb {Q}}$</annotation>\\n </semantics></math>” is necessary. We also show some versions are really stronger than others.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.201900020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.201900020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了μ-完备μ + $\mu ^+$ -c.c.强迫概念的合适族的强迫公理。我们证明了某种形式的条件p 1,p2 $p_1,p_2$有一个≤Q - lub $\le _{{\mathbb {Q}}}\text{-}{\rm lub}$在Q ${\mathbb {Q}}$”是必要的。我们还展示了一些版本确实比其他版本更强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Forcing axioms for λ-complete μ + $\mu ^+$ -c.c.

We consider forcing axioms for suitable families of μ-complete μ + $\mu ^+$ -c.c. forcing notions. We show that some form of the condition “ p 1 , p 2 $p_1,p_2$ have a Q - lub $\le _{{\mathbb {Q}}}\text{-}{\rm lub}$ in Q ${\mathbb {Q}}$ ” is necessary. We also show some versions are really stronger than others.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信