C. Simon Wedlund, M. Volwerk, C. Mazelle, S. Rojas Mata, G. Stenberg Wieser, Y. Futaana, J. Halekas, D. Rojas-Castillo, C. Bertucci, J. Espley
{"title":"非磁化行星磁鞘中镜像模式结构的统计分布。第1部分:由MAVEN航天器观测到的火星","authors":"C. Simon Wedlund, M. Volwerk, C. Mazelle, S. Rojas Mata, G. Stenberg Wieser, Y. Futaana, J. Halekas, D. Rojas-Castillo, C. Bertucci, J. Espley","doi":"10.5194/angeo-41-225-2023","DOIUrl":null,"url":null,"abstract":"Abstract. In this series of papers, we present statistical maps of mirror-mode-like (MM) structures in the magnetosheaths of Mars and Venus and calculate the probability of detecting them in spacecraft data. We aim to study and compare them with the same tools and a similar payload at both planets. We consider their dependence on extreme ultraviolet (EUV) solar flux levels (high and low) and, specific to Mars, on Mars Year (MY) as well as atmospheric seasons (four solar longitudes Ls).\nWe first use magnetic-field-only criteria to detect these structures and present ways to mitigate ambiguities in their nature. In line with many previous studies at Earth, this technique has the advantage of using one instrument (a magnetometer) with good time resolution, facilitating comparisons between planetary and cometary environments. Applied to the magnetometer data of the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft from November 2014 to February 2021 (MY32–MY35), we detect events closely resembling MMs lasting in total more than 170 000 s, corresponding to about 0.1 % of MAVEN's total time spent in the Martian plasma environment. We calculate MM-like occurrences normalised to the spacecraft's residence time during the course of the mission. Detection probabilities are about 1 % at most for any given controlling parameter. In general, MM-like structures appear in two main regions: one behind the shock and the other close to the induced magnetospheric boundary, as expected from theory. Detection probabilities are higher on average in low-solar-EUV conditions, whereas high-solar-EUV conditions see an increase in detections within the magnetospheric tail. We tentatively link the former tendency to two combining effects: the favouring of ion cyclotron waves the closer to perihelion due to plasma beta effects and, possibly, the non-gyrotropy of pickup ion distributions. This study is the first of two on the magnetosheaths of Mars and Venus.\n","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"101 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Statistical distribution of mirror-mode-like structures in the magnetosheaths of unmagnetised planets – Part 1: Mars as observed by the MAVEN spacecraft\",\"authors\":\"C. Simon Wedlund, M. Volwerk, C. Mazelle, S. Rojas Mata, G. Stenberg Wieser, Y. Futaana, J. Halekas, D. Rojas-Castillo, C. Bertucci, J. Espley\",\"doi\":\"10.5194/angeo-41-225-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this series of papers, we present statistical maps of mirror-mode-like (MM) structures in the magnetosheaths of Mars and Venus and calculate the probability of detecting them in spacecraft data. We aim to study and compare them with the same tools and a similar payload at both planets. We consider their dependence on extreme ultraviolet (EUV) solar flux levels (high and low) and, specific to Mars, on Mars Year (MY) as well as atmospheric seasons (four solar longitudes Ls).\\nWe first use magnetic-field-only criteria to detect these structures and present ways to mitigate ambiguities in their nature. In line with many previous studies at Earth, this technique has the advantage of using one instrument (a magnetometer) with good time resolution, facilitating comparisons between planetary and cometary environments. Applied to the magnetometer data of the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft from November 2014 to February 2021 (MY32–MY35), we detect events closely resembling MMs lasting in total more than 170 000 s, corresponding to about 0.1 % of MAVEN's total time spent in the Martian plasma environment. We calculate MM-like occurrences normalised to the spacecraft's residence time during the course of the mission. Detection probabilities are about 1 % at most for any given controlling parameter. In general, MM-like structures appear in two main regions: one behind the shock and the other close to the induced magnetospheric boundary, as expected from theory. Detection probabilities are higher on average in low-solar-EUV conditions, whereas high-solar-EUV conditions see an increase in detections within the magnetospheric tail. We tentatively link the former tendency to two combining effects: the favouring of ion cyclotron waves the closer to perihelion due to plasma beta effects and, possibly, the non-gyrotropy of pickup ion distributions. This study is the first of two on the magnetosheaths of Mars and Venus.\\n\",\"PeriodicalId\":50777,\"journal\":{\"name\":\"Annales Geophysicae\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Geophysicae\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/angeo-41-225-2023\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Geophysicae","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/angeo-41-225-2023","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Statistical distribution of mirror-mode-like structures in the magnetosheaths of unmagnetised planets – Part 1: Mars as observed by the MAVEN spacecraft
Abstract. In this series of papers, we present statistical maps of mirror-mode-like (MM) structures in the magnetosheaths of Mars and Venus and calculate the probability of detecting them in spacecraft data. We aim to study and compare them with the same tools and a similar payload at both planets. We consider their dependence on extreme ultraviolet (EUV) solar flux levels (high and low) and, specific to Mars, on Mars Year (MY) as well as atmospheric seasons (four solar longitudes Ls).
We first use magnetic-field-only criteria to detect these structures and present ways to mitigate ambiguities in their nature. In line with many previous studies at Earth, this technique has the advantage of using one instrument (a magnetometer) with good time resolution, facilitating comparisons between planetary and cometary environments. Applied to the magnetometer data of the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft from November 2014 to February 2021 (MY32–MY35), we detect events closely resembling MMs lasting in total more than 170 000 s, corresponding to about 0.1 % of MAVEN's total time spent in the Martian plasma environment. We calculate MM-like occurrences normalised to the spacecraft's residence time during the course of the mission. Detection probabilities are about 1 % at most for any given controlling parameter. In general, MM-like structures appear in two main regions: one behind the shock and the other close to the induced magnetospheric boundary, as expected from theory. Detection probabilities are higher on average in low-solar-EUV conditions, whereas high-solar-EUV conditions see an increase in detections within the magnetospheric tail. We tentatively link the former tendency to two combining effects: the favouring of ion cyclotron waves the closer to perihelion due to plasma beta effects and, possibly, the non-gyrotropy of pickup ion distributions. This study is the first of two on the magnetosheaths of Mars and Venus.
期刊介绍:
Annales Geophysicae (ANGEO) is a not-for-profit international multi- and inter-disciplinary scientific open-access journal in the field of solar–terrestrial and planetary sciences. ANGEO publishes original articles and short communications (letters) on research of the Sun–Earth system, including the science of space weather, solar–terrestrial plasma physics, the Earth''s ionosphere and atmosphere, the magnetosphere, and the study of planets and planetary systems, the interaction between the different spheres of a planet, and the interaction across the planetary system. Topics range from space weathering, planetary magnetic field, and planetary interior and surface dynamics to the formation and evolution of planetary systems.