关于利用日内收益预测秘鲁股市每日波动风险的说明

M. Zevallos
{"title":"关于利用日内收益预测秘鲁股市每日波动风险的说明","authors":"M. Zevallos","doi":"10.18800/economia.201902.004","DOIUrl":null,"url":null,"abstract":"In this paper I present a model to forecast the daily Value at Risk (VaR) of the Peruvian stock market (measured through the general index of the Lima Stock Exchange: the IGBVL) based on intraday (high-frequency) data. Daily volatility is estimated using realised volatility and I adopted a regression quantile approach to calculate one-step predicted VaR values. The results suggest that the realised volatility is a useful measure to explain the Peruvian stock market volatility and I obtained sound results using quantile regression for risk estimation.","PeriodicalId":100390,"journal":{"name":"Economía Informa","volume":"270 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Note on Forecasting Daily Peruvian Stock Market Volatility Risk Using Intraday Returns\",\"authors\":\"M. Zevallos\",\"doi\":\"10.18800/economia.201902.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper I present a model to forecast the daily Value at Risk (VaR) of the Peruvian stock market (measured through the general index of the Lima Stock Exchange: the IGBVL) based on intraday (high-frequency) data. Daily volatility is estimated using realised volatility and I adopted a regression quantile approach to calculate one-step predicted VaR values. The results suggest that the realised volatility is a useful measure to explain the Peruvian stock market volatility and I obtained sound results using quantile regression for risk estimation.\",\"PeriodicalId\":100390,\"journal\":{\"name\":\"Economía Informa\",\"volume\":\"270 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economía Informa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18800/economia.201902.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economía Informa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18800/economia.201902.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我提出了一个基于日内(高频)数据预测秘鲁股票市场日风险值(VaR)的模型(通过利马证券交易所的综合指数:IGBVL来衡量)。每日波动率是使用实现波动率估计的,我采用回归分位数方法来计算一步预测的VaR值。结果表明,实现波动率是解释秘鲁股市波动的有效措施,我使用分位数回归进行风险估计获得了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Forecasting Daily Peruvian Stock Market Volatility Risk Using Intraday Returns
In this paper I present a model to forecast the daily Value at Risk (VaR) of the Peruvian stock market (measured through the general index of the Lima Stock Exchange: the IGBVL) based on intraday (high-frequency) data. Daily volatility is estimated using realised volatility and I adopted a regression quantile approach to calculate one-step predicted VaR values. The results suggest that the realised volatility is a useful measure to explain the Peruvian stock market volatility and I obtained sound results using quantile regression for risk estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信