基于FPGA的GLCM纹理特征测量协处理器

Q4 Arts and Humanities
M. Tahir, M. A. Roula, A. Bouridane, F. Kurugollu, A. Amira
{"title":"基于FPGA的GLCM纹理特征测量协处理器","authors":"M. Tahir, M. A. Roula, A. Bouridane, F. Kurugollu, A. Amira","doi":"10.1109/ICECS.2003.1301679","DOIUrl":null,"url":null,"abstract":"Gray Level Co-occurrence Matrix (GLCM), one of the best known texture analysis methods, estimates image properties related to second-order statistics. These image properties commonly known as texture features can be used for image classification, image segmentation, and remote sensing applications. In this paper, we present an FPGA based co-processor to accelerate the extraction of texture features from GLCM. Handel-C, a recently developed C-like programming language for hardware design, has been used for the FPGA implementation of GLCM texture features measurement. Results show that the FPGA has better speed performances when compared to a general purpose processor for the extraction of GLCM features.","PeriodicalId":36912,"journal":{"name":"Czas Kultury","volume":"22 1","pages":"1006-1009 Vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An FPGA based co-processor for GLCM texture features measurement\",\"authors\":\"M. Tahir, M. A. Roula, A. Bouridane, F. Kurugollu, A. Amira\",\"doi\":\"10.1109/ICECS.2003.1301679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gray Level Co-occurrence Matrix (GLCM), one of the best known texture analysis methods, estimates image properties related to second-order statistics. These image properties commonly known as texture features can be used for image classification, image segmentation, and remote sensing applications. In this paper, we present an FPGA based co-processor to accelerate the extraction of texture features from GLCM. Handel-C, a recently developed C-like programming language for hardware design, has been used for the FPGA implementation of GLCM texture features measurement. Results show that the FPGA has better speed performances when compared to a general purpose processor for the extraction of GLCM features.\",\"PeriodicalId\":36912,\"journal\":{\"name\":\"Czas Kultury\",\"volume\":\"22 1\",\"pages\":\"1006-1009 Vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czas Kultury\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2003.1301679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czas Kultury","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2003.1301679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 9

摘要

灰度共生矩阵(GLCM)是最著名的纹理分析方法之一,用于估计与二阶统计量相关的图像属性。这些通常被称为纹理特征的图像属性可用于图像分类、图像分割和遥感应用。在本文中,我们提出了一种基于FPGA的协处理器来加速从GLCM中提取纹理特征。Handel-C是最近开发的一种用于硬件设计的类c编程语言,用于FPGA实现GLCM纹理特征测量。结果表明,与通用处理器相比,FPGA在GLCM特征提取方面具有更好的速度性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An FPGA based co-processor for GLCM texture features measurement
Gray Level Co-occurrence Matrix (GLCM), one of the best known texture analysis methods, estimates image properties related to second-order statistics. These image properties commonly known as texture features can be used for image classification, image segmentation, and remote sensing applications. In this paper, we present an FPGA based co-processor to accelerate the extraction of texture features from GLCM. Handel-C, a recently developed C-like programming language for hardware design, has been used for the FPGA implementation of GLCM texture features measurement. Results show that the FPGA has better speed performances when compared to a general purpose processor for the extraction of GLCM features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Czas Kultury
Czas Kultury Social Sciences-Social Sciences (miscellaneous)
CiteScore
0.10
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信