微流控温度梯度下DNA折纸的快速组装

K. Kawai, Harada Keita, Ryota Nakamura, Kenta Arima, K. Yamamura, O. Tabata
{"title":"微流控温度梯度下DNA折纸的快速组装","authors":"K. Kawai, Harada Keita, Ryota Nakamura, Kenta Arima, K. Yamamura, O. Tabata","doi":"10.1109/TRANSDUCERS.2019.8808567","DOIUrl":null,"url":null,"abstract":"DNA nanostructures, called DNA origami, are self-assembled through DNA hybridization by annealing process. DNA origami consists of a long single-strand DNA, scaffold, and hundreds of complementary oligonucleotides, staple, and constructs various 2D or 3D nanostructures. For DNA origami folding, it is necessary to denature DNAs and annealed them slowly. Although in general annealing process using microtube and commercial thermal cycler, it takes a long time for DNA hybridization due to large scale reactor. Here, We present an effect of temperature distribution during a rapid folding of DNA nanostructures, called DNA origami. DNA origami can fabricate various designs and sizes of 2D/3D nanostructures by self-assembly of DNA hybridization. Based on results of computational fluid dynamics (CFD) simulation, time-dependent temperature distribution in microtube effects the yield of DNA origami. Triangle DNA origami can be folded at -30 °C/min in microfluidic channel whereas no DNA nanostructures were observed by general annealing process. We confirmed 20 times-faster self-assembly of DNA nanostructures in microfluidic channel, compared to general annealing process in microtube by thermal cycler.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"32 1","pages":"398-401"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Assembly of DNA Origami in Microfluidic Temperature Gradient\",\"authors\":\"K. Kawai, Harada Keita, Ryota Nakamura, Kenta Arima, K. Yamamura, O. Tabata\",\"doi\":\"10.1109/TRANSDUCERS.2019.8808567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA nanostructures, called DNA origami, are self-assembled through DNA hybridization by annealing process. DNA origami consists of a long single-strand DNA, scaffold, and hundreds of complementary oligonucleotides, staple, and constructs various 2D or 3D nanostructures. For DNA origami folding, it is necessary to denature DNAs and annealed them slowly. Although in general annealing process using microtube and commercial thermal cycler, it takes a long time for DNA hybridization due to large scale reactor. Here, We present an effect of temperature distribution during a rapid folding of DNA nanostructures, called DNA origami. DNA origami can fabricate various designs and sizes of 2D/3D nanostructures by self-assembly of DNA hybridization. Based on results of computational fluid dynamics (CFD) simulation, time-dependent temperature distribution in microtube effects the yield of DNA origami. Triangle DNA origami can be folded at -30 °C/min in microfluidic channel whereas no DNA nanostructures were observed by general annealing process. We confirmed 20 times-faster self-assembly of DNA nanostructures in microfluidic channel, compared to general annealing process in microtube by thermal cycler.\",\"PeriodicalId\":6672,\"journal\":{\"name\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"volume\":\"32 1\",\"pages\":\"398-401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2019.8808567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DNA纳米结构,称为DNA折纸,是通过DNA杂交退火过程自组装的。DNA折纸由长单链DNA、支架和数百个互补的寡核苷酸、短钉组成,并构建各种2D或3D纳米结构。对于DNA折纸,需要对DNA进行变性和缓慢退火。虽然一般的退火工艺采用微管和商用热循环器,但由于反应器规模较大,DNA杂交耗时较长。在这里,我们提出了温度分布对DNA纳米结构快速折叠的影响,称为DNA折纸。DNA折纸技术通过DNA杂交的自组装可以制造出各种形状和尺寸的二维/三维纳米结构。计算流体动力学(CFD)模拟结果表明,微管温度随时间的变化对DNA折纸的产率有影响。在-30°C/min的温度下,在微流控通道中可以折叠出三角形DNA折纸,而一般的退火工艺没有观察到DNA纳米结构。我们证实了DNA纳米结构在微流控通道中的自组装速度比在微管中使用热循环器的一般退火过程快20倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid Assembly of DNA Origami in Microfluidic Temperature Gradient
DNA nanostructures, called DNA origami, are self-assembled through DNA hybridization by annealing process. DNA origami consists of a long single-strand DNA, scaffold, and hundreds of complementary oligonucleotides, staple, and constructs various 2D or 3D nanostructures. For DNA origami folding, it is necessary to denature DNAs and annealed them slowly. Although in general annealing process using microtube and commercial thermal cycler, it takes a long time for DNA hybridization due to large scale reactor. Here, We present an effect of temperature distribution during a rapid folding of DNA nanostructures, called DNA origami. DNA origami can fabricate various designs and sizes of 2D/3D nanostructures by self-assembly of DNA hybridization. Based on results of computational fluid dynamics (CFD) simulation, time-dependent temperature distribution in microtube effects the yield of DNA origami. Triangle DNA origami can be folded at -30 °C/min in microfluidic channel whereas no DNA nanostructures were observed by general annealing process. We confirmed 20 times-faster self-assembly of DNA nanostructures in microfluidic channel, compared to general annealing process in microtube by thermal cycler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信