{"title":"co2基涡管冷却系统下Ti-6Al-4V车削加工性能研究","authors":"Khirod Mahapatro, Vamsi Krishna Pasam","doi":"10.15282/ijame.20.1.2023.11.0796","DOIUrl":null,"url":null,"abstract":"The study on the machinability of titanium alloys provides new ways to minimize the difficulty levels of machining the alloys due to substantial heat accumulation. To improve machinability, pivotal factors such as heat accumulation and cutting temperature must be regulated. In this study, a turning operation was performed on Ti-6Al-4V and the cutting temperature was reduced by supplying cooled CO2 gas through a vortex tube connected with two nozzles. Variations in cutting force, cutting temperature, and surface roughness with cutting speed, feed, and depth of cut were recorded. Subsequently, responses were compared for single nozzle vortex tube, dry, and compressed air environments at different cutting speeds. Cutting force and surface roughness followed a similar trend which increased with decreasing speed, and increasing feed and depth of cut. The cutting temperature increased with all three variables. The proposed cooling system provided better results in terms of cutting temperature and surface roughness, while a marginally higher cutting force was observed compared to dry cutting","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machinability Study in Turning of Ti-6Al-4V under CO2-based Vortex Tube Cooling System\",\"authors\":\"Khirod Mahapatro, Vamsi Krishna Pasam\",\"doi\":\"10.15282/ijame.20.1.2023.11.0796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study on the machinability of titanium alloys provides new ways to minimize the difficulty levels of machining the alloys due to substantial heat accumulation. To improve machinability, pivotal factors such as heat accumulation and cutting temperature must be regulated. In this study, a turning operation was performed on Ti-6Al-4V and the cutting temperature was reduced by supplying cooled CO2 gas through a vortex tube connected with two nozzles. Variations in cutting force, cutting temperature, and surface roughness with cutting speed, feed, and depth of cut were recorded. Subsequently, responses were compared for single nozzle vortex tube, dry, and compressed air environments at different cutting speeds. Cutting force and surface roughness followed a similar trend which increased with decreasing speed, and increasing feed and depth of cut. The cutting temperature increased with all three variables. The proposed cooling system provided better results in terms of cutting temperature and surface roughness, while a marginally higher cutting force was observed compared to dry cutting\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.1.2023.11.0796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.1.2023.11.0796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Machinability Study in Turning of Ti-6Al-4V under CO2-based Vortex Tube Cooling System
The study on the machinability of titanium alloys provides new ways to minimize the difficulty levels of machining the alloys due to substantial heat accumulation. To improve machinability, pivotal factors such as heat accumulation and cutting temperature must be regulated. In this study, a turning operation was performed on Ti-6Al-4V and the cutting temperature was reduced by supplying cooled CO2 gas through a vortex tube connected with two nozzles. Variations in cutting force, cutting temperature, and surface roughness with cutting speed, feed, and depth of cut were recorded. Subsequently, responses were compared for single nozzle vortex tube, dry, and compressed air environments at different cutting speeds. Cutting force and surface roughness followed a similar trend which increased with decreasing speed, and increasing feed and depth of cut. The cutting temperature increased with all three variables. The proposed cooling system provided better results in terms of cutting temperature and surface roughness, while a marginally higher cutting force was observed compared to dry cutting
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.