网络切片的 SLA 分解:深度神经网络方法

Cyril Shih-Huan Hsu;Danny De Vleeschauwer;Chrysa Papagianni
{"title":"网络切片的 SLA 分解:深度神经网络方法","authors":"Cyril Shih-Huan Hsu;Danny De Vleeschauwer;Chrysa Papagianni","doi":"10.1109/LNET.2023.3310359","DOIUrl":null,"url":null,"abstract":"For a network slice that spans multiple technology and/or administrative domains, these domains must ensure that the slice’s End-to-End (E2E) Service Level Agreement (SLA) is met. Thus, the E2E SLA should be decomposed to partial SLAs, assigned to each of these domains. Assuming a two-level management architecture consisting of an E2E service orchestrator and local domain controllers, we consider that the former is only aware of historical data of the local controllers’ responses to previous slice requests, and captures this knowledge in a risk model per domain. In this letter, we propose the use of Neural Network (NN) based risk models, using such historical data, to decompose the E2E SLA. Specifically, we introduce models that incorporate monotonicity, applicable even in cases involving small datasets. An empirical study on a synthetic multi-domain dataset demonstrates the efficiency of our approach.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 4","pages":"294-298"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLA Decomposition for Network Slicing: A Deep Neural Network Approach\",\"authors\":\"Cyril Shih-Huan Hsu;Danny De Vleeschauwer;Chrysa Papagianni\",\"doi\":\"10.1109/LNET.2023.3310359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a network slice that spans multiple technology and/or administrative domains, these domains must ensure that the slice’s End-to-End (E2E) Service Level Agreement (SLA) is met. Thus, the E2E SLA should be decomposed to partial SLAs, assigned to each of these domains. Assuming a two-level management architecture consisting of an E2E service orchestrator and local domain controllers, we consider that the former is only aware of historical data of the local controllers’ responses to previous slice requests, and captures this knowledge in a risk model per domain. In this letter, we propose the use of Neural Network (NN) based risk models, using such historical data, to decompose the E2E SLA. Specifically, we introduce models that incorporate monotonicity, applicable even in cases involving small datasets. An empirical study on a synthetic multi-domain dataset demonstrates the efficiency of our approach.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"5 4\",\"pages\":\"294-298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10234634/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10234634/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于跨越多个技术和/或管理域的网络分片,这些域必须确保满足分片的端到端 (E2E) 服务级别协议 (SLA)。因此,E2E SLA 应分解为部分 SLA,分配给每个域。假设有一个由 E2E 服务协调器和本地域控制器组成的两级管理架构,我们认为前者只知道本地控制器对以前分片请求的响应的历史数据,并在每个域的风险模型中捕获这些知识。在这封信中,我们建议使用基于神经网络 (NN) 的风险模型,利用这些历史数据来分解 E2E SLA。具体来说,我们引入了包含单调性的模型,即使在涉及小数据集的情况下也适用。对合成多域数据集的实证研究证明了我们方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLA Decomposition for Network Slicing: A Deep Neural Network Approach
For a network slice that spans multiple technology and/or administrative domains, these domains must ensure that the slice’s End-to-End (E2E) Service Level Agreement (SLA) is met. Thus, the E2E SLA should be decomposed to partial SLAs, assigned to each of these domains. Assuming a two-level management architecture consisting of an E2E service orchestrator and local domain controllers, we consider that the former is only aware of historical data of the local controllers’ responses to previous slice requests, and captures this knowledge in a risk model per domain. In this letter, we propose the use of Neural Network (NN) based risk models, using such historical data, to decompose the E2E SLA. Specifically, we introduce models that incorporate monotonicity, applicable even in cases involving small datasets. An empirical study on a synthetic multi-domain dataset demonstrates the efficiency of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信