一种基于机动性感知集群的射频能量采集认知无线传感器网络MAC协议

IF 1.5 Q3 TELECOMMUNICATIONS
Arif Obaid, Xavier Fernando, Muhammad Jaseemuddin
{"title":"一种基于机动性感知集群的射频能量采集认知无线传感器网络MAC协议","authors":"Arif Obaid,&nbsp;Xavier Fernando,&nbsp;Muhammad Jaseemuddin","doi":"10.1049/wss2.12021","DOIUrl":null,"url":null,"abstract":"<p>Cognitive wireless sensor networks (CWSN) are severely energy constrained and radio frequency (RF) wireless energy harvesting (RFWEH) has been shown to improve the network lifetime. In many CWSN applications, node mobility imposes challenges owing to changing network topology. Therefore, the design of a new medium access control (MAC) protocol that can handle node mobility as well as energy harvesting is required. A cluster-based multihop MAC protocol (RMAC-M) is proposed that incorporates RF energy harvesting in a mobility-aware CWSN. Our protocol selects cluster heads using an algorithm based on an R-factor parameter consisting of residual node energy, residual node data and node speed, with appropriate weights. It then transmits data packages using a multitier super cluster head routing mechanism without the need for neighbour discovery. The multitier clustering and RFWEH mechanisms boost the energy performance of the network, increasing its lifetime. On the other hand, time slots allocated for RFWEH increase delay, thereby affecting system latency. Owing to its unique nature, the proposed algorithm has no comparable protocols in the literature. For the sake of completeness, RMAC-M is compared with well-known MAC protocols such as LEACH-M and KoNMAC that do not have energy harvesting or mobility features. Simulation results show that the proposed protocol increases the lifetime of the CWSN nodes substantially, promising a self-sustainable network in terms of energy. Furthermore, despite the allocation of time slots for energy harvesting, critical network parameters such as throughput, packet loss and average delay remain within target levels.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12021","citationCount":"6","resultStr":"{\"title\":\"A mobility-aware cluster-based MAC protocol for radio- frequency energy harvesting cognitive wireless sensor networks\",\"authors\":\"Arif Obaid,&nbsp;Xavier Fernando,&nbsp;Muhammad Jaseemuddin\",\"doi\":\"10.1049/wss2.12021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cognitive wireless sensor networks (CWSN) are severely energy constrained and radio frequency (RF) wireless energy harvesting (RFWEH) has been shown to improve the network lifetime. In many CWSN applications, node mobility imposes challenges owing to changing network topology. Therefore, the design of a new medium access control (MAC) protocol that can handle node mobility as well as energy harvesting is required. A cluster-based multihop MAC protocol (RMAC-M) is proposed that incorporates RF energy harvesting in a mobility-aware CWSN. Our protocol selects cluster heads using an algorithm based on an R-factor parameter consisting of residual node energy, residual node data and node speed, with appropriate weights. It then transmits data packages using a multitier super cluster head routing mechanism without the need for neighbour discovery. The multitier clustering and RFWEH mechanisms boost the energy performance of the network, increasing its lifetime. On the other hand, time slots allocated for RFWEH increase delay, thereby affecting system latency. Owing to its unique nature, the proposed algorithm has no comparable protocols in the literature. For the sake of completeness, RMAC-M is compared with well-known MAC protocols such as LEACH-M and KoNMAC that do not have energy harvesting or mobility features. Simulation results show that the proposed protocol increases the lifetime of the CWSN nodes substantially, promising a self-sustainable network in terms of energy. Furthermore, despite the allocation of time slots for energy harvesting, critical network parameters such as throughput, packet loss and average delay remain within target levels.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12021\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 6

摘要

认知无线传感器网络(CWSN)存在严重的能量限制,射频(RF)无线能量收集(RFWEH)已被证明可以改善网络寿命。在许多CWSN应用中,由于网络拓扑结构的变化,节点的移动性带来了挑战。因此,需要设计一种能够处理节点移动性和能量收集的新型介质访问控制(MAC)协议。提出了一种基于集群的多跳MAC协议(RMAC-M),该协议将射频能量收集集成到移动感知CWSN中。该协议使用一种基于r因子参数的算法来选择簇头,该参数由剩余节点能量、剩余节点数据和节点速度组成,并具有适当的权重。然后,它使用多层超级簇头路由机制传输数据包,而不需要邻居发现。多层聚类和RFWEH机制提高了网络的能量性能,延长了网络的寿命。另一方面,为RFWEH分配的时隙增加了时延,从而影响系统时延。由于其独特性,所提出的算法在文献中没有可比较的协议。为了完整起见,RMAC-M与众所周知的MAC协议(如LEACH-M和KoNMAC)进行了比较,这些协议没有能量收集或移动功能。仿真结果表明,该协议显著提高了CWSN节点的生存期,保证了网络在能量方面的自我可持续。此外,尽管为能量收集分配了时隙,但吞吐量、丢包和平均延迟等关键网络参数仍保持在目标水平内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A mobility-aware cluster-based MAC protocol for radio- frequency energy harvesting cognitive wireless sensor networks

A mobility-aware cluster-based MAC protocol for radio- frequency energy harvesting cognitive wireless sensor networks

Cognitive wireless sensor networks (CWSN) are severely energy constrained and radio frequency (RF) wireless energy harvesting (RFWEH) has been shown to improve the network lifetime. In many CWSN applications, node mobility imposes challenges owing to changing network topology. Therefore, the design of a new medium access control (MAC) protocol that can handle node mobility as well as energy harvesting is required. A cluster-based multihop MAC protocol (RMAC-M) is proposed that incorporates RF energy harvesting in a mobility-aware CWSN. Our protocol selects cluster heads using an algorithm based on an R-factor parameter consisting of residual node energy, residual node data and node speed, with appropriate weights. It then transmits data packages using a multitier super cluster head routing mechanism without the need for neighbour discovery. The multitier clustering and RFWEH mechanisms boost the energy performance of the network, increasing its lifetime. On the other hand, time slots allocated for RFWEH increase delay, thereby affecting system latency. Owing to its unique nature, the proposed algorithm has no comparable protocols in the literature. For the sake of completeness, RMAC-M is compared with well-known MAC protocols such as LEACH-M and KoNMAC that do not have energy harvesting or mobility features. Simulation results show that the proposed protocol increases the lifetime of the CWSN nodes substantially, promising a self-sustainable network in terms of energy. Furthermore, despite the allocation of time slots for energy harvesting, critical network parameters such as throughput, packet loss and average delay remain within target levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信