A. Bhuiyan, Lingyu Meng, Hsien-Lien Huang, C. Chae, Jinwoo Hwang, Hongping Zhao
{"title":"金属有机化学气相沉积-使用三甲基镓生长的单斜(AlxGa1-x)2O3薄膜中Al掺入率高达99%","authors":"A. Bhuiyan, Lingyu Meng, Hsien-Lien Huang, C. Chae, Jinwoo Hwang, Hongping Zhao","doi":"10.1002/pssr.202300224","DOIUrl":null,"url":null,"abstract":"Growths of monoclinic (AlxGa1−x)2O3 thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3 thin films on (010), (100), and ( 2¯ 01) β‐Ga2O3 substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3 films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3 films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and ( 2¯ 01) β‐Ga2O3 substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3 films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3 films grown on ( 2¯ 01) β‐Ga2O3 show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3 grown on (100) Ga2O3 are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3 films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Al Incorporation up to 99% in Metalorganic Chemical Vapor Deposition‐Grown Monoclinic (AlxGa1–x)2O3 Films Using Trimethylgallium\",\"authors\":\"A. Bhuiyan, Lingyu Meng, Hsien-Lien Huang, C. Chae, Jinwoo Hwang, Hongping Zhao\",\"doi\":\"10.1002/pssr.202300224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growths of monoclinic (AlxGa1−x)2O3 thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3 thin films on (010), (100), and ( 2¯ 01) β‐Ga2O3 substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3 films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3 films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and ( 2¯ 01) β‐Ga2O3 substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3 films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3 films grown on ( 2¯ 01) β‐Ga2O3 show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3 grown on (100) Ga2O3 are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3 films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices.\",\"PeriodicalId\":20059,\"journal\":{\"name\":\"physica status solidi (RRL) – Rapid Research Letters\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (RRL) – Rapid Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202300224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Al Incorporation up to 99% in Metalorganic Chemical Vapor Deposition‐Grown Monoclinic (AlxGa1–x)2O3 Films Using Trimethylgallium
Growths of monoclinic (AlxGa1−x)2O3 thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3 thin films on (010), (100), and ( 2¯ 01) β‐Ga2O3 substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3 films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3 films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and ( 2¯ 01) β‐Ga2O3 substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3 films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3 films grown on ( 2¯ 01) β‐Ga2O3 show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3 grown on (100) Ga2O3 are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3 films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices.