升华法制备氯沙坦钾胃保留浮片

Hiral S Bhusara, Ara T Patel, M. Patel
{"title":"升华法制备氯沙坦钾胃保留浮片","authors":"Hiral S Bhusara, Ara T Patel, M. Patel","doi":"10.18231/J.IJPCA.2021.014","DOIUrl":null,"url":null,"abstract":"The purpose of present study was to formulate and Evaluate Sustained release floating tablet of losartan Potassium using Camphor and Polyethylene Oxide as Pore formation for floating and release retarding agent respectively to improve gastric residence time and patient compliance in management of hypertension. The tablet was prepared by direct compression by using HPMC K4 as dry binder. Camphor and PEO as floating and release retarding agent for sustained release floating tablet. Post compression was done to increase the hardness and floating time of tablet. Release modifier was used to speed up the release of drug from sustained release floating tablet. The effect of two independent variables like amount of Sublimating agent (camphor) and amount of Polyethylene oxide (PEO) on Q30min, Q360min, and Q720min was optimized using 32 factorial design and analyzed using the software design expert 10.0.3. The observed (actual values) responses were coincided well with the predicted values, given by the optimization technique. The floating tablet were characterized by FTIR for drug excipient compatibility.","PeriodicalId":13889,"journal":{"name":"International Journal of Pharmaceutical Chemistry and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of gastroretentiv floating tablets of losartan potassium by sublimation method\",\"authors\":\"Hiral S Bhusara, Ara T Patel, M. Patel\",\"doi\":\"10.18231/J.IJPCA.2021.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of present study was to formulate and Evaluate Sustained release floating tablet of losartan Potassium using Camphor and Polyethylene Oxide as Pore formation for floating and release retarding agent respectively to improve gastric residence time and patient compliance in management of hypertension. The tablet was prepared by direct compression by using HPMC K4 as dry binder. Camphor and PEO as floating and release retarding agent for sustained release floating tablet. Post compression was done to increase the hardness and floating time of tablet. Release modifier was used to speed up the release of drug from sustained release floating tablet. The effect of two independent variables like amount of Sublimating agent (camphor) and amount of Polyethylene oxide (PEO) on Q30min, Q360min, and Q720min was optimized using 32 factorial design and analyzed using the software design expert 10.0.3. The observed (actual values) responses were coincided well with the predicted values, given by the optimization technique. The floating tablet were characterized by FTIR for drug excipient compatibility.\",\"PeriodicalId\":13889,\"journal\":{\"name\":\"International Journal of Pharmaceutical Chemistry and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutical Chemistry and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18231/J.IJPCA.2021.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutical Chemistry and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18231/J.IJPCA.2021.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是研制氯沙坦钾缓释片,分别以樟脑和聚氧聚乙烯作为缓释片的浮孔形成剂和缓释剂,以改善胃停留时间和患者治疗高血压的依从性。以HPMC K4为干粘结剂,采用直接压缩法制备该片剂。樟脑和PEO作为缓释浮片的缓释剂。采用后压法提高片剂的硬度,延长片剂的漂浮时间。采用释放调节剂加速缓释片的释放。采用32析因设计优化升华剂(樟脑)用量和聚氧聚乙烯(PEO)用量两个自变量对Q30min、Q360min和Q720min的影响,并采用设计专家10.0.3软件进行分析。观测到的(实际值)响应与优化技术给出的预测值吻合较好。用红外光谱对所制浮片进行了药物赋形剂配伍性表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of gastroretentiv floating tablets of losartan potassium by sublimation method
The purpose of present study was to formulate and Evaluate Sustained release floating tablet of losartan Potassium using Camphor and Polyethylene Oxide as Pore formation for floating and release retarding agent respectively to improve gastric residence time and patient compliance in management of hypertension. The tablet was prepared by direct compression by using HPMC K4 as dry binder. Camphor and PEO as floating and release retarding agent for sustained release floating tablet. Post compression was done to increase the hardness and floating time of tablet. Release modifier was used to speed up the release of drug from sustained release floating tablet. The effect of two independent variables like amount of Sublimating agent (camphor) and amount of Polyethylene oxide (PEO) on Q30min, Q360min, and Q720min was optimized using 32 factorial design and analyzed using the software design expert 10.0.3. The observed (actual values) responses were coincided well with the predicted values, given by the optimization technique. The floating tablet were characterized by FTIR for drug excipient compatibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信