Baojing Huang , Xinxin Fu , Kai Wang , Liang Wang , Hualei Zhang , Zhongyi Liu , Bin Liu , Jun Li
{"title":"化学键合BiVO4/Bi19Cl3S27异质结与快速空穴萃取动力学的连续CO2光还原","authors":"Baojing Huang , Xinxin Fu , Kai Wang , Liang Wang , Hualei Zhang , Zhongyi Liu , Bin Liu , Jun Li","doi":"10.1016/j.apmate.2023.100140","DOIUrl":null,"url":null,"abstract":"<div><p>Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO<sub>2</sub> photoreduction performance of photocatalysts. Herein, chemically bonded BiVO<sub>4</sub>/Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub> (BVO/BCS) S-scheme heterojunction with a strong internal electric field is designed. Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO<sub>4</sub> to Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub> via the interfacial chemical bonding interactions (i.e., Bi-O and Bi-S bonds) between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation, breaking the interfacial barrier and surface charge localization of Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub>, and further decreasing the energy of reactive hydrogen generation, CO<sub>2</sub> absorption and activation. The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system. As a result, BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO<sub>2</sub> reduction and the 24 h CO yield reaches 678.27 μmol·g<sup>−1</sup>. This work provides an atomic-level insight into charge transfer kinetics and CO<sub>2</sub> reduction mechanism in S-scheme heterojunction.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 1","pages":"Article 100140"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X23000325/pdfft?md5=2fef6f28965db0538dbed05d7f27317d&pid=1-s2.0-S2772834X23000325-main.pdf","citationCount":"8","resultStr":"{\"title\":\"Chemically bonded BiVO4/Bi19Cl3S27 heterojunction with fast hole extraction dynamics for continuous CO2 photoreduction\",\"authors\":\"Baojing Huang , Xinxin Fu , Kai Wang , Liang Wang , Hualei Zhang , Zhongyi Liu , Bin Liu , Jun Li\",\"doi\":\"10.1016/j.apmate.2023.100140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO<sub>2</sub> photoreduction performance of photocatalysts. Herein, chemically bonded BiVO<sub>4</sub>/Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub> (BVO/BCS) S-scheme heterojunction with a strong internal electric field is designed. Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO<sub>4</sub> to Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub> via the interfacial chemical bonding interactions (i.e., Bi-O and Bi-S bonds) between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation, breaking the interfacial barrier and surface charge localization of Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub>, and further decreasing the energy of reactive hydrogen generation, CO<sub>2</sub> absorption and activation. The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system. As a result, BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO<sub>2</sub> reduction and the 24 h CO yield reaches 678.27 μmol·g<sup>−1</sup>. This work provides an atomic-level insight into charge transfer kinetics and CO<sub>2</sub> reduction mechanism in S-scheme heterojunction.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"3 1\",\"pages\":\"Article 100140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000325/pdfft?md5=2fef6f28965db0538dbed05d7f27317d&pid=1-s2.0-S2772834X23000325-main.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X23000325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
表面电荷的局部化和较低的电荷转移效率严重制约了活性氢的供给和光催化剂的CO2光还原性能。本文设计了具有强内电场的化学键合BiVO4/Bi19Cl3S27 (BVO/BCS) S-scheme异质结。实验和密度函数理论计算结果证实,精加工异质结通过BVO的Bi原子与BCS的S原子或BCS的Bi原子与BVO的O原子之间的界面化学键作用(即Bi-O和Bi-S键)加速了光生电荷从BiVO4向Bi19Cl3S27的矢量迁移,打破了Bi19Cl3S27的界面势垒和表面电荷局域化。进一步降低反应制氢、CO2吸收和活化的能量。在BVO/BCS S-scheme异质结体系中,光生载流子的分离效率远高于对应的个体。结果表明,BVO/BCS异质结的CO2连续光催化还原性能显著提高,24 h CO产率达到678.27 μmol·g−1。这项工作为s -图式异质结的电荷转移动力学和CO2还原机制提供了原子水平的见解。
Chemically bonded BiVO4/Bi19Cl3S27 heterojunction with fast hole extraction dynamics for continuous CO2 photoreduction
Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO2 photoreduction performance of photocatalysts. Herein, chemically bonded BiVO4/Bi19Cl3S27 (BVO/BCS) S-scheme heterojunction with a strong internal electric field is designed. Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO4 to Bi19Cl3S27 via the interfacial chemical bonding interactions (i.e., Bi-O and Bi-S bonds) between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation, breaking the interfacial barrier and surface charge localization of Bi19Cl3S27, and further decreasing the energy of reactive hydrogen generation, CO2 absorption and activation. The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system. As a result, BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO2 reduction and the 24 h CO yield reaches 678.27 μmol·g−1. This work provides an atomic-level insight into charge transfer kinetics and CO2 reduction mechanism in S-scheme heterojunction.