基于w * w^{*}字符空间的对偶Banach代数的类锥可服从性质

A. Sahami, S. Shariati, A. Bodaghi
{"title":"基于w * w^{*}字符空间的对偶Banach代数的类锥可服从性质","authors":"A. Sahami, S. Shariati, A. Bodaghi","doi":"10.1515/anly-2021-1026","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the concept of left ϕ-approximate Connes amenability for a dual Banach algebra 𝒜 {\\mathcal{A}} is studied, where ϕ is a weak * {{}^{*}} -continuous multiplicative linear functional on 𝒜 {\\mathcal{A}} . Some characterizations for module extension dual Banach algebras and matrix algebras are given. Moreover, the notion of approximate left ϕ-Connes biprojectivity for dual Banach algebras is introduced and some concrete examples regarding this new notion are indicated.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"24 1","pages":"195 - 204"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Connes amenable-like properties of dual Banach algebras based on w * w^{*} -character space\",\"authors\":\"A. Sahami, S. Shariati, A. Bodaghi\",\"doi\":\"10.1515/anly-2021-1026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the concept of left ϕ-approximate Connes amenability for a dual Banach algebra 𝒜 {\\\\mathcal{A}} is studied, where ϕ is a weak * {{}^{*}} -continuous multiplicative linear functional on 𝒜 {\\\\mathcal{A}} . Some characterizations for module extension dual Banach algebras and matrix algebras are given. Moreover, the notion of approximate left ϕ-Connes biprojectivity for dual Banach algebras is introduced and some concrete examples regarding this new notion are indicated.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"24 1\",\"pages\":\"195 - 204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2021-1026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2021-1026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了对偶Banach代数中φ是一个弱的*{{}^{*}}-连续的乘线性泛函,其中φ是一个弱的*{{}^{*}}的左ϕ-近似cones适性的概念。给出了模扩展对偶Banach代数和矩阵代数的一些性质。此外,还引入了对偶Banach代数的近似左 - connes双投影的概念,并给出了有关这一新概念的一些具体例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Connes amenable-like properties of dual Banach algebras based on w * w^{*} -character space
Abstract In this paper, the concept of left ϕ-approximate Connes amenability for a dual Banach algebra 𝒜 {\mathcal{A}} is studied, where ϕ is a weak * {{}^{*}} -continuous multiplicative linear functional on 𝒜 {\mathcal{A}} . Some characterizations for module extension dual Banach algebras and matrix algebras are given. Moreover, the notion of approximate left ϕ-Connes biprojectivity for dual Banach algebras is introduced and some concrete examples regarding this new notion are indicated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信