交叉验证,引导和支持向量机

M. Tsujitani, Yusuke Tanaka
{"title":"交叉验证,引导和支持向量机","authors":"M. Tsujitani, Yusuke Tanaka","doi":"10.1155/2011/302572","DOIUrl":null,"url":null,"abstract":"This paper considers the applications of resampling methods to support vector machines (SVMs). We take into account the leaving-one-out cross-validation (CV) when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"63 1","pages":"302572:1-302572:6"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Cross-Validation, Bootstrap, and Support Vector Machines\",\"authors\":\"M. Tsujitani, Yusuke Tanaka\",\"doi\":\"10.1155/2011/302572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the applications of resampling methods to support vector machines (SVMs). We take into account the leaving-one-out cross-validation (CV) when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"63 1\",\"pages\":\"302572:1-302572:6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/302572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/302572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了重采样方法在支持向量机中的应用。在确定最优调整参数和自举偏差时,我们考虑了留一交叉验证(CV),以便总结支持向量机的拟合优度度量。为了在用训练样本构建的预测规则中提供对过量误差偏差的估计,还采用了留一CV。我们分析了鲭鱼卵调查和肝脏疾病研究的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Validation, Bootstrap, and Support Vector Machines
This paper considers the applications of resampling methods to support vector machines (SVMs). We take into account the leaving-one-out cross-validation (CV) when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信