{"title":"土源致病菌抗真菌疫霉(杉木枯死的病原)对抗卵菌杀菌剂乙博肟、氟哌啶、下颌丙胺和oxathiapiprolin的敏感性","authors":"A. M. Thurston, L. Waller, L. Condron, A. Black","doi":"10.30843/nzpp.2022.75.11751","DOIUrl":null,"url":null,"abstract":"The oomycete Phytophthora agathidicida is the causal agent of kauri dieback, which threatens the survival of endemic kauri (Agathis australis) forests in Aotearoa|New Zealand. Current chemical control of P. agathidicida involves the application of either a mixture of halogenated tertiary amines or phosphite salts with some success, but neither treatment cures the disease. Recently, four anti-oomycete fungicides, all with different modes of action, have become commercially available. Here, we determined the inhibition potential of these fungicides on three P. agathidicida isolates, using agar dilution assays. The average concentration required to inhibit mycelial growth by 50% (EC50) for ethaboxam, fluopicolide, and mandipropamid was 0.0916, 0.372, and 0.0196 µg/mL, respectively. Inhibition of P. agathidicida mycelia by oxathiapiprolin and its commercial formulation, Zorvec® Enicade®, was 0.000152 and 0.000309 µg/mL, respectively. Based on the EC50 values reported in this study, these fungicides are the most effective inhibitors of P. agathidicida mycelia when compared to previously screened fungicides, natural products, and plant extracts. Thus, their performance in this initial screening supports further research into their potential use as a kauri dieback management tool.","PeriodicalId":19180,"journal":{"name":"New Zealand Plant Protection","volume":"111 3S 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sensitivity of the soil-borne pathogen Phytophthora agathidicida, the causal agent of kauri dieback, to the anti-oomycete fungicides ethaboxam, fluopicolide, mandipropamid, and oxathiapiprolin\",\"authors\":\"A. M. Thurston, L. Waller, L. Condron, A. Black\",\"doi\":\"10.30843/nzpp.2022.75.11751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oomycete Phytophthora agathidicida is the causal agent of kauri dieback, which threatens the survival of endemic kauri (Agathis australis) forests in Aotearoa|New Zealand. Current chemical control of P. agathidicida involves the application of either a mixture of halogenated tertiary amines or phosphite salts with some success, but neither treatment cures the disease. Recently, four anti-oomycete fungicides, all with different modes of action, have become commercially available. Here, we determined the inhibition potential of these fungicides on three P. agathidicida isolates, using agar dilution assays. The average concentration required to inhibit mycelial growth by 50% (EC50) for ethaboxam, fluopicolide, and mandipropamid was 0.0916, 0.372, and 0.0196 µg/mL, respectively. Inhibition of P. agathidicida mycelia by oxathiapiprolin and its commercial formulation, Zorvec® Enicade®, was 0.000152 and 0.000309 µg/mL, respectively. Based on the EC50 values reported in this study, these fungicides are the most effective inhibitors of P. agathidicida mycelia when compared to previously screened fungicides, natural products, and plant extracts. Thus, their performance in this initial screening supports further research into their potential use as a kauri dieback management tool.\",\"PeriodicalId\":19180,\"journal\":{\"name\":\"New Zealand Plant Protection\",\"volume\":\"111 3S 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Plant Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30843/nzpp.2022.75.11751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Plant Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30843/nzpp.2022.75.11751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Sensitivity of the soil-borne pathogen Phytophthora agathidicida, the causal agent of kauri dieback, to the anti-oomycete fungicides ethaboxam, fluopicolide, mandipropamid, and oxathiapiprolin
The oomycete Phytophthora agathidicida is the causal agent of kauri dieback, which threatens the survival of endemic kauri (Agathis australis) forests in Aotearoa|New Zealand. Current chemical control of P. agathidicida involves the application of either a mixture of halogenated tertiary amines or phosphite salts with some success, but neither treatment cures the disease. Recently, four anti-oomycete fungicides, all with different modes of action, have become commercially available. Here, we determined the inhibition potential of these fungicides on three P. agathidicida isolates, using agar dilution assays. The average concentration required to inhibit mycelial growth by 50% (EC50) for ethaboxam, fluopicolide, and mandipropamid was 0.0916, 0.372, and 0.0196 µg/mL, respectively. Inhibition of P. agathidicida mycelia by oxathiapiprolin and its commercial formulation, Zorvec® Enicade®, was 0.000152 and 0.000309 µg/mL, respectively. Based on the EC50 values reported in this study, these fungicides are the most effective inhibitors of P. agathidicida mycelia when compared to previously screened fungicides, natural products, and plant extracts. Thus, their performance in this initial screening supports further research into their potential use as a kauri dieback management tool.
期刊介绍:
New Zealand Plant Protection is the journal of the New Zealand Plant Protection Society. It publishes original research papers on all aspects of biology, ecology and control of weeds, vertebrate and invertebrate pests, and pathogens and beneficial micro-organisms in agriculture, horticulture, forestry and natural ecosystems of relevance to New Zealand.