基于外部记忆神经网络模型的多跳推理与知识计算问答研究

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuri Murayama, Ichiro Kobayashi
{"title":"基于外部记忆神经网络模型的多跳推理与知识计算问答研究","authors":"Yuri Murayama, Ichiro Kobayashi","doi":"10.20965/jaciii.2023.p0481","DOIUrl":null,"url":null,"abstract":"The differentiable neural computer (DNC) is a neural network model with an addressable external memory that can solve algorithmic and question-answering tasks. Improved versions of the DNC have been proposed, including the robust and scalable DNC (rsDNC) and DNC-deallocation-masking-sharpness (DNC-DMS). However, integrating structured knowledge and calculations into these DNC models remains a challenging research question. In this study, we incorporate an architecture for knowledge and calculations into the DNC, rsDNC, and DNC-DMS to improve their abilities to generate correct answers for questions with multi-hop reasoning and provide calculations over structured knowledge. Our improved rsDNC model achieves the best performance for the mean top-1 accuracy, and our improved DNC-DMS model scores the highest for the top-10 accuracy in the GEO dataset. In addition, our improved rsDNC model outperforms other models in regards to the mean top-1 accuracy and mean top-10 accuracy in the augmented GEO dataset.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"15 1","pages":"481-489"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Question-Answering with Multi-Hop Reasoning and Calculation over Knowledge Using a Neural Network Model with External Memories\",\"authors\":\"Yuri Murayama, Ichiro Kobayashi\",\"doi\":\"10.20965/jaciii.2023.p0481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The differentiable neural computer (DNC) is a neural network model with an addressable external memory that can solve algorithmic and question-answering tasks. Improved versions of the DNC have been proposed, including the robust and scalable DNC (rsDNC) and DNC-deallocation-masking-sharpness (DNC-DMS). However, integrating structured knowledge and calculations into these DNC models remains a challenging research question. In this study, we incorporate an architecture for knowledge and calculations into the DNC, rsDNC, and DNC-DMS to improve their abilities to generate correct answers for questions with multi-hop reasoning and provide calculations over structured knowledge. Our improved rsDNC model achieves the best performance for the mean top-1 accuracy, and our improved DNC-DMS model scores the highest for the top-10 accuracy in the GEO dataset. In addition, our improved rsDNC model outperforms other models in regards to the mean top-1 accuracy and mean top-10 accuracy in the augmented GEO dataset.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"15 1\",\"pages\":\"481-489\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

可微神经计算机(DNC)是一种具有可寻址外部存储器的神经网络模型,可以解决算法和问答任务。DNC的改进版本已经被提出,包括鲁棒和可扩展的DNC (rsDNC)和DNC-释放-掩码-清晰度(DNC- dms)。然而,将结构化知识和计算集成到这些DNC模型中仍然是一个具有挑战性的研究问题。在本研究中,我们将知识和计算架构整合到DNC、rsDNC和DNC- dms中,以提高它们对具有多跳推理的问题生成正确答案的能力,并提供对结构化知识的计算。改进的rsDNC模型在GEO数据集中的前1位精度上取得了最好的成绩,改进的DNC-DMS模型在前10位精度上取得了最高的成绩。此外,我们改进的rsDNC模型在增强GEO数据集的平均前1精度和平均前10精度方面优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Question-Answering with Multi-Hop Reasoning and Calculation over Knowledge Using a Neural Network Model with External Memories
The differentiable neural computer (DNC) is a neural network model with an addressable external memory that can solve algorithmic and question-answering tasks. Improved versions of the DNC have been proposed, including the robust and scalable DNC (rsDNC) and DNC-deallocation-masking-sharpness (DNC-DMS). However, integrating structured knowledge and calculations into these DNC models remains a challenging research question. In this study, we incorporate an architecture for knowledge and calculations into the DNC, rsDNC, and DNC-DMS to improve their abilities to generate correct answers for questions with multi-hop reasoning and provide calculations over structured knowledge. Our improved rsDNC model achieves the best performance for the mean top-1 accuracy, and our improved DNC-DMS model scores the highest for the top-10 accuracy in the GEO dataset. In addition, our improved rsDNC model outperforms other models in regards to the mean top-1 accuracy and mean top-10 accuracy in the augmented GEO dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信