低深度光神经网络

Chip Pub Date : 2022-03-01 DOI:10.1016/j.chip.2021.100002
Xiao-Ming Zhang , Man-Hong Yung
{"title":"低深度光神经网络","authors":"Xiao-Ming Zhang ,&nbsp;Man-Hong Yung","doi":"10.1016/j.chip.2021.100002","DOIUrl":null,"url":null,"abstract":"<div><p>Optical neural network (ONNs) are emerging as attractive proposals for machine-learning applications. However, the stability of ONNs decreases with the circuit depth, limiting the scalability of ONNs for practical uses. Here we demonstrate how to compress the circuit depth to scale only logarithmically in terms of the dimension of the data, leading to an exponential gain in terms of noise robustness. Our low-depth (LD)-ONN is based on an architecture, called Optical CompuTing Of dot-Product UnitS (OCTOPUS), which can also be applied individually as a linear perceptron for solving classification problems. We present both numerical and theoretical evidence showing that LD-ONN can exhibit a significant improvement on robustness, compared with previous ONN proposals based on singular-value decomposition.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 1","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472321000022/pdfft?md5=9c1598985e9443dcf6a01f45e1b7b109&pid=1-s2.0-S2709472321000022-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Low-depth optical neural networks\",\"authors\":\"Xiao-Ming Zhang ,&nbsp;Man-Hong Yung\",\"doi\":\"10.1016/j.chip.2021.100002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optical neural network (ONNs) are emerging as attractive proposals for machine-learning applications. However, the stability of ONNs decreases with the circuit depth, limiting the scalability of ONNs for practical uses. Here we demonstrate how to compress the circuit depth to scale only logarithmically in terms of the dimension of the data, leading to an exponential gain in terms of noise robustness. Our low-depth (LD)-ONN is based on an architecture, called Optical CompuTing Of dot-Product UnitS (OCTOPUS), which can also be applied individually as a linear perceptron for solving classification problems. We present both numerical and theoretical evidence showing that LD-ONN can exhibit a significant improvement on robustness, compared with previous ONN proposals based on singular-value decomposition.</p></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"1 1\",\"pages\":\"Article 100002\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2709472321000022/pdfft?md5=9c1598985e9443dcf6a01f45e1b7b109&pid=1-s2.0-S2709472321000022-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472321000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472321000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

光神经网络(ONNs)正在成为机器学习应用的有吸引力的提议。然而,随着电路深度的增加,网络的稳定性降低,限制了网络在实际应用中的可扩展性。在这里,我们演示了如何压缩电路深度,使其在数据维数方面仅按对数缩放,从而在噪声鲁棒性方面获得指数级增益。我们的低深度(LD)-ONN基于一种称为点积单位光学计算(OCTOPUS)的架构,它也可以单独应用于线性感知器来解决分类问题。我们提出的数值和理论证据表明,与以前基于奇异值分解的ONN方案相比,LD-ONN在鲁棒性方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-depth optical neural networks

Optical neural network (ONNs) are emerging as attractive proposals for machine-learning applications. However, the stability of ONNs decreases with the circuit depth, limiting the scalability of ONNs for practical uses. Here we demonstrate how to compress the circuit depth to scale only logarithmically in terms of the dimension of the data, leading to an exponential gain in terms of noise robustness. Our low-depth (LD)-ONN is based on an architecture, called Optical CompuTing Of dot-Product UnitS (OCTOPUS), which can also be applied individually as a linear perceptron for solving classification problems. We present both numerical and theoretical evidence showing that LD-ONN can exhibit a significant improvement on robustness, compared with previous ONN proposals based on singular-value decomposition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信