基于凸主成分分析的Wasserstein空间测地线主成分分析

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Jérémie Bigot, R. Gouet, T. Klein, Alfredo López
{"title":"基于凸主成分分析的Wasserstein空间测地线主成分分析","authors":"Jérémie Bigot, R. Gouet, T. Klein, Alfredo López","doi":"10.1214/15-AIHP706","DOIUrl":null,"url":null,"abstract":"We introduce the method of Geodesic Principal Component Analysis (GPCA) on the space of probability measures on the line, with finite second moment, endowed with the Wasserstein metric. We discuss the advantages of this approach, over a standard functional PCA of probability densities in the Hilbert space of square-integrable functions. We establish the consistency of the method by showing that the empirical GPCA converges to its population counterpart, as the sample size tends to infinity. A key property in the study of GPCA is the isometry between the Wasserstein space and a closed convex subset of the space of square-integrable functions, with respect to an appropriate measure. Therefore, we consider the general problem of PCA in a closed convex subset of a separable Hilbert space, which serves as basis for the analysis of GPCA and also has interest in its own right. We provide illustrative examples on simple statistical models, to show the benefits of this approach for data analysis. The method is also applied to a real dataset of population pyramids.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"7 1","pages":"1-26"},"PeriodicalIF":1.2000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Geodesic PCA in the Wasserstein space by Convex PCA\",\"authors\":\"Jérémie Bigot, R. Gouet, T. Klein, Alfredo López\",\"doi\":\"10.1214/15-AIHP706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the method of Geodesic Principal Component Analysis (GPCA) on the space of probability measures on the line, with finite second moment, endowed with the Wasserstein metric. We discuss the advantages of this approach, over a standard functional PCA of probability densities in the Hilbert space of square-integrable functions. We establish the consistency of the method by showing that the empirical GPCA converges to its population counterpart, as the sample size tends to infinity. A key property in the study of GPCA is the isometry between the Wasserstein space and a closed convex subset of the space of square-integrable functions, with respect to an appropriate measure. Therefore, we consider the general problem of PCA in a closed convex subset of a separable Hilbert space, which serves as basis for the analysis of GPCA and also has interest in its own right. We provide illustrative examples on simple statistical models, to show the benefits of this approach for data analysis. The method is also applied to a real dataset of population pyramids.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"7 1\",\"pages\":\"1-26\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AIHP706\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP706","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 104

摘要

本文介绍了一种基于Wasserstein度量的有限秒矩线上概率测度空间的测地线主成分分析方法。我们讨论了这种方法的优点,与Hilbert空间中平方可积函数的概率密度的标准泛函PCA相比。我们通过证明经验GPCA收敛于其人口对应,当样本量趋于无穷大,建立了方法的一致性。研究GPCA的一个关键性质是Wasserstein空间与平方可积函数空间的闭凸子集在适当测度下的等距性。因此,我们在可分离Hilbert空间的闭凸子集中考虑PCA的一般问题,这是分析GPCA的基础,也是其本身的兴趣所在。我们提供了简单统计模型的说明性示例,以展示这种方法对数据分析的好处。该方法也适用于实际的人口金字塔数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesic PCA in the Wasserstein space by Convex PCA
We introduce the method of Geodesic Principal Component Analysis (GPCA) on the space of probability measures on the line, with finite second moment, endowed with the Wasserstein metric. We discuss the advantages of this approach, over a standard functional PCA of probability densities in the Hilbert space of square-integrable functions. We establish the consistency of the method by showing that the empirical GPCA converges to its population counterpart, as the sample size tends to infinity. A key property in the study of GPCA is the isometry between the Wasserstein space and a closed convex subset of the space of square-integrable functions, with respect to an appropriate measure. Therefore, we consider the general problem of PCA in a closed convex subset of a separable Hilbert space, which serves as basis for the analysis of GPCA and also has interest in its own right. We provide illustrative examples on simple statistical models, to show the benefits of this approach for data analysis. The method is also applied to a real dataset of population pyramids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信