基于地理加权回归和深度学习的地表温度预测

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hongfei Jia, De-He Yang, Weiping Deng, Qing Wei, Wenliang Jiang
{"title":"基于地理加权回归和深度学习的地表温度预测","authors":"Hongfei Jia, De-He Yang, Weiping Deng, Qing Wei, Wenliang Jiang","doi":"10.1002/widm.1396","DOIUrl":null,"url":null,"abstract":"For prediction of urban remote sensing surface temperature, cloud, cloud shadow and snow contamination lead to the failure of surface temperature inversion and vegetation‐related index calculation. A time series prediction framework of urban surface temperature under cloud interference is proposed in this paper. This is helpful to solve the problem of the impact of data loss on surface temperature prediction. Spatial and temporal variation trends of surface temperature and vegetation index are analyzed using Landsat 7/8 remote sensing data of 2010 to 2019 from Beijing. The geographically weighed regression (GWR) method is used to realize the simulation of surface temperature based on the current date. The deep learning prediction network based on convolution and long short‐term memory (LSTM) networks was constructed to predict the spatial distribution of surface temperature on the next observation date. The time series analysis shows that the NDBI is less than −0.2, which indicates that there may be cloud contamination. The land surface temperature (LST) modeling results show that the precision of estimation using GWR method on impervious surface and water bodies is superior compared to the vegetation area. For LST prediction using deep learning methods, the result of the prediction on surface temperature space distribution was relatively good. The purpose of this study is to make up for the missing data affected by cloud, snow, and other interference factors, and to be applied to the prediction of the spatial and temporal distributions of LST.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"40 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Predicting land surface temperature with geographically weighed regression and deep learning\",\"authors\":\"Hongfei Jia, De-He Yang, Weiping Deng, Qing Wei, Wenliang Jiang\",\"doi\":\"10.1002/widm.1396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For prediction of urban remote sensing surface temperature, cloud, cloud shadow and snow contamination lead to the failure of surface temperature inversion and vegetation‐related index calculation. A time series prediction framework of urban surface temperature under cloud interference is proposed in this paper. This is helpful to solve the problem of the impact of data loss on surface temperature prediction. Spatial and temporal variation trends of surface temperature and vegetation index are analyzed using Landsat 7/8 remote sensing data of 2010 to 2019 from Beijing. The geographically weighed regression (GWR) method is used to realize the simulation of surface temperature based on the current date. The deep learning prediction network based on convolution and long short‐term memory (LSTM) networks was constructed to predict the spatial distribution of surface temperature on the next observation date. The time series analysis shows that the NDBI is less than −0.2, which indicates that there may be cloud contamination. The land surface temperature (LST) modeling results show that the precision of estimation using GWR method on impervious surface and water bodies is superior compared to the vegetation area. For LST prediction using deep learning methods, the result of the prediction on surface temperature space distribution was relatively good. The purpose of this study is to make up for the missing data affected by cloud, snow, and other interference factors, and to be applied to the prediction of the spatial and temporal distributions of LST.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1396\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1396","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 12

摘要

在城市遥感地表温度预测中,云、云影和雪污染导致地表温度反演和植被相关指数计算失败。提出了云干扰下城市地表温度的时间序列预测框架。这有助于解决数据丢失对地表温度预测的影响问题。利用2010 - 2019年北京地区Landsat 7/8遥感数据,分析了地表温度和植被指数的时空变化趋势。采用地理加权回归(GWR)方法,实现了基于当前数据的地表温度模拟。构建基于卷积和长短期记忆(LSTM)网络的深度学习预测网络,预测下一个观测日期的地表温度空间分布。时间序列分析表明,NDBI小于- 0.2,表明可能存在云污染。地表温度(LST)模拟结果表明,GWR方法在不透水地表和水体的估算精度优于植被区。对于深度学习方法的地表温度预测,对地表温度空间分布的预测效果较好。本研究的目的是弥补受云、雪等干扰因素影响的缺失数据,并将其应用于地表温度的时空分布预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting land surface temperature with geographically weighed regression and deep learning
For prediction of urban remote sensing surface temperature, cloud, cloud shadow and snow contamination lead to the failure of surface temperature inversion and vegetation‐related index calculation. A time series prediction framework of urban surface temperature under cloud interference is proposed in this paper. This is helpful to solve the problem of the impact of data loss on surface temperature prediction. Spatial and temporal variation trends of surface temperature and vegetation index are analyzed using Landsat 7/8 remote sensing data of 2010 to 2019 from Beijing. The geographically weighed regression (GWR) method is used to realize the simulation of surface temperature based on the current date. The deep learning prediction network based on convolution and long short‐term memory (LSTM) networks was constructed to predict the spatial distribution of surface temperature on the next observation date. The time series analysis shows that the NDBI is less than −0.2, which indicates that there may be cloud contamination. The land surface temperature (LST) modeling results show that the precision of estimation using GWR method on impervious surface and water bodies is superior compared to the vegetation area. For LST prediction using deep learning methods, the result of the prediction on surface temperature space distribution was relatively good. The purpose of this study is to make up for the missing data affected by cloud, snow, and other interference factors, and to be applied to the prediction of the spatial and temporal distributions of LST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信