评估Cape Flats含水层管理含水层补给(MAR)的潜力

IF 1 4区 环境科学与生态学 Q4 WATER RESOURCES
B Mauck, K Winter
{"title":"评估Cape Flats含水层管理含水层补给(MAR)的潜力","authors":"B Mauck, K Winter","doi":"10.17159/wsa/2021.v47.i4.3801","DOIUrl":null,"url":null,"abstract":"This paper discusses the potential use of ‘managed aquifer recharge’ (MAR) in Cape Town to provide additional water supplies to the city that are fit-for-purpose. The paper investigates the feasibility of implementing MAR by simulating the artificial recharge of winter stormwater into the Cape Flats Aquifer (CFA), an extensive sandy, unconfined aquifer that covers most of metropolitan Cape Town’s urban landscape. The objective is to assess the storage capacity and supply potential of two MAR sites by modelling various scenarios in order to determine the feasibility of MAR as a viable strategy for achieving improved water security by augmenting groundwater water supply. The selected scenarios demonstrated that MAR could be used to minimise the risk of seawater intrusion and maximise the amount of water available for abstraction from the CFA. Six MAR scenarios provided strong evidence to suggest that there is sufficient storage capacity within the CFA for using stormwater to improve the wellfield yield in two regions of the CFA and which can sustainably yield approximately 18 Mm3 per year. The study concluded that the use of stormwater or treated wastewater could be deliberately used to recharge the CFA and as a viable option in support of the City of Cape Town’s intention to establish a water-resilient city by 2030.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"86 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Assessing the potential for managed aquifer recharge (MAR) of the Cape Flats Aquifer\",\"authors\":\"B Mauck, K Winter\",\"doi\":\"10.17159/wsa/2021.v47.i4.3801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the potential use of ‘managed aquifer recharge’ (MAR) in Cape Town to provide additional water supplies to the city that are fit-for-purpose. The paper investigates the feasibility of implementing MAR by simulating the artificial recharge of winter stormwater into the Cape Flats Aquifer (CFA), an extensive sandy, unconfined aquifer that covers most of metropolitan Cape Town’s urban landscape. The objective is to assess the storage capacity and supply potential of two MAR sites by modelling various scenarios in order to determine the feasibility of MAR as a viable strategy for achieving improved water security by augmenting groundwater water supply. The selected scenarios demonstrated that MAR could be used to minimise the risk of seawater intrusion and maximise the amount of water available for abstraction from the CFA. Six MAR scenarios provided strong evidence to suggest that there is sufficient storage capacity within the CFA for using stormwater to improve the wellfield yield in two regions of the CFA and which can sustainably yield approximately 18 Mm3 per year. The study concluded that the use of stormwater or treated wastewater could be deliberately used to recharge the CFA and as a viable option in support of the City of Cape Town’s intention to establish a water-resilient city by 2030.\",\"PeriodicalId\":23623,\"journal\":{\"name\":\"Water SA\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water SA\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.17159/wsa/2021.v47.i4.3801\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2021.v47.i4.3801","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了“管理含水层补给”(MAR)在开普敦的潜在用途,为城市提供额外的供水。本文通过模拟冬季雨水进入开普滩含水层(CFA)的人工补给,研究了实施MAR的可行性。开普滩含水层是一个覆盖开普敦大部分城市景观的广阔的沙质无约束含水层。其目的是通过模拟各种情景,评估两个海洋监测场址的储存能力和供应潜力,以便确定海洋监测作为一项通过增加地下水供应来改善水安全的可行战略的可行性。选定的情景表明,MAR可用于最大限度地减少海水入侵的风险,并最大限度地提高从CFA提取的水量。六个MAR情景提供了强有力的证据,表明CFA内部有足够的储存能力,可以利用CFA两个区域的雨水来提高井田产量,并且每年可以持续产生约18 Mm3。该研究的结论是,可以有意地使用雨水或处理过的废水来补给CFA,并作为支持开普敦市到2030年建立一个水弹性城市的意图的可行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the potential for managed aquifer recharge (MAR) of the Cape Flats Aquifer
This paper discusses the potential use of ‘managed aquifer recharge’ (MAR) in Cape Town to provide additional water supplies to the city that are fit-for-purpose. The paper investigates the feasibility of implementing MAR by simulating the artificial recharge of winter stormwater into the Cape Flats Aquifer (CFA), an extensive sandy, unconfined aquifer that covers most of metropolitan Cape Town’s urban landscape. The objective is to assess the storage capacity and supply potential of two MAR sites by modelling various scenarios in order to determine the feasibility of MAR as a viable strategy for achieving improved water security by augmenting groundwater water supply. The selected scenarios demonstrated that MAR could be used to minimise the risk of seawater intrusion and maximise the amount of water available for abstraction from the CFA. Six MAR scenarios provided strong evidence to suggest that there is sufficient storage capacity within the CFA for using stormwater to improve the wellfield yield in two regions of the CFA and which can sustainably yield approximately 18 Mm3 per year. The study concluded that the use of stormwater or treated wastewater could be deliberately used to recharge the CFA and as a viable option in support of the City of Cape Town’s intention to establish a water-resilient city by 2030.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water SA
Water SA 环境科学-水资源
CiteScore
2.80
自引率
6.70%
发文量
46
审稿时长
18-36 weeks
期刊介绍: WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc. Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信