关于子空间遍历算子

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES
M. Moosapoor
{"title":"关于子空间遍历算子","authors":"M. Moosapoor","doi":"10.5614/J.MATH.FUND.SCI.2020.52.3.5","DOIUrl":null,"url":null,"abstract":"In this paper, we define subspace-ergodic operators and give examples of these operators. We show that by any given separable infinite-dimensional Banach space, subspace-ergodic operators can be constructed. We demonstrate that an invertible operator T is subspace-ergodic if and only if T-1 is subspace-ergodic. We prove that the direct sum of two subspace-ergodic operators is subspace-ergodic and if the direct sum of two operators is subspace-ergodic, then each of them is subspace-ergodic. Also, we investigate relations between subspace-ergodic and subspace-mixing operators. For example, we show that if T is subspace-mixing and invertible, then Tn and T-n are subspace-ergodic for n∈ℕ.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"18 1","pages":"312-321"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Subspace-ergodic Operators\",\"authors\":\"M. Moosapoor\",\"doi\":\"10.5614/J.MATH.FUND.SCI.2020.52.3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define subspace-ergodic operators and give examples of these operators. We show that by any given separable infinite-dimensional Banach space, subspace-ergodic operators can be constructed. We demonstrate that an invertible operator T is subspace-ergodic if and only if T-1 is subspace-ergodic. We prove that the direct sum of two subspace-ergodic operators is subspace-ergodic and if the direct sum of two operators is subspace-ergodic, then each of them is subspace-ergodic. Also, we investigate relations between subspace-ergodic and subspace-mixing operators. For example, we show that if T is subspace-mixing and invertible, then Tn and T-n are subspace-ergodic for n∈ℕ.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":\"18 1\",\"pages\":\"312-321\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/J.MATH.FUND.SCI.2020.52.3.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/J.MATH.FUND.SCI.2020.52.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了子空间遍历算子,并给出了这些算子的例子。我们证明了对于任意给定的可分离无限维巴拿赫空间,子空间遍历算子是可以构造的。我们证明了一个可逆算子T是子空间遍历的,如果T-1是子空间遍历的,则证明了onlyÂ。证明了两个子空间遍历算子的直和是子空间遍历的,如果两个算子的直和是子空间遍历的,则它们都是子空间遍历的。此外,我们还研究了子空间遍历算子和子空间混合算子之间的关系。例如,我们证明了如果T是子空间混合且可逆的,则Tn和T-n是子空间遍历的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Subspace-ergodic Operators
In this paper, we define subspace-ergodic operators and give examples of these operators. We show that by any given separable infinite-dimensional Banach space, subspace-ergodic operators can be constructed. We demonstrate that an invertible operator T is subspace-ergodic if and only if T-1 is subspace-ergodic. We prove that the direct sum of two subspace-ergodic operators is subspace-ergodic and if the direct sum of two operators is subspace-ergodic, then each of them is subspace-ergodic. Also, we investigate relations between subspace-ergodic and subspace-mixing operators. For example, we show that if T is subspace-mixing and invertible, then Tn and T-n are subspace-ergodic for n∈ℕ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信