有向网络上分散一致性和随机优化的任意压缩

Taha Toghani, César A. Uribe
{"title":"有向网络上分散一致性和随机优化的任意压缩","authors":"Taha Toghani, César A. Uribe","doi":"10.48550/arXiv.2204.08160","DOIUrl":null,"url":null,"abstract":"We study the decentralized consensus and stochastic optimization problems with compressed communications over static directed graphs. We propose an iterative gradient-based algorithm that compresses messages according to a desired compression ratio. The proposed method provably reduces the communication overhead on the network at every communication round. Contrary to existing literature, we allow for arbitrary compression ratios in the communicated messages. We show a linear convergence rate for the proposed method on the consensus problem. Moreover, we provide explicit convergence rates for decentralized stochastic optimization problems on smooth functions that are either (i) strongly convex, (ii) convex, or (iii) non-convex. Finally, we provide numerical experiments to illustrate convergence under arbitrary compression ratios and the communication efficiency of our algorithm.","PeriodicalId":11813,"journal":{"name":"Eur. J. Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Arbitrary Compression for Decentralized Consensus and Stochastic Optimization over Directed Networks\",\"authors\":\"Taha Toghani, César A. Uribe\",\"doi\":\"10.48550/arXiv.2204.08160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the decentralized consensus and stochastic optimization problems with compressed communications over static directed graphs. We propose an iterative gradient-based algorithm that compresses messages according to a desired compression ratio. The proposed method provably reduces the communication overhead on the network at every communication round. Contrary to existing literature, we allow for arbitrary compression ratios in the communicated messages. We show a linear convergence rate for the proposed method on the consensus problem. Moreover, we provide explicit convergence rates for decentralized stochastic optimization problems on smooth functions that are either (i) strongly convex, (ii) convex, or (iii) non-convex. Finally, we provide numerical experiments to illustrate convergence under arbitrary compression ratios and the communication efficiency of our algorithm.\",\"PeriodicalId\":11813,\"journal\":{\"name\":\"Eur. J. Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eur. J. Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.08160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.08160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了静态有向图上压缩通信的分散共识和随机优化问题。我们提出了一种基于迭代梯度的算法,该算法根据所需的压缩比压缩消息。该方法可证明地降低了网络在每一轮通信中的通信开销。与现有文献相反,我们允许在传递的信息中使用任意的压缩比。我们证明了该方法在一致性问题上的线性收敛速度。此外,我们还提供了(i)强凸、(ii)凸或(iii)非凸光滑函数上分散随机优化问题的显式收敛率。最后,通过数值实验验证了该算法在任意压缩比下的收敛性和通信效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Arbitrary Compression for Decentralized Consensus and Stochastic Optimization over Directed Networks
We study the decentralized consensus and stochastic optimization problems with compressed communications over static directed graphs. We propose an iterative gradient-based algorithm that compresses messages according to a desired compression ratio. The proposed method provably reduces the communication overhead on the network at every communication round. Contrary to existing literature, we allow for arbitrary compression ratios in the communicated messages. We show a linear convergence rate for the proposed method on the consensus problem. Moreover, we provide explicit convergence rates for decentralized stochastic optimization problems on smooth functions that are either (i) strongly convex, (ii) convex, or (iii) non-convex. Finally, we provide numerical experiments to illustrate convergence under arbitrary compression ratios and the communication efficiency of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信