Yanyang Xu, Yang Qiu, Hui Ren, D. Ju, Hong-Lei Jia
{"title":"响应面法优化超声辅助双水相体系提取黑桃果渣中多酚类物质的工艺","authors":"Yanyang Xu, Yang Qiu, Hui Ren, D. Ju, Hong-Lei Jia","doi":"10.1080/10826068.2016.1244684","DOIUrl":null,"url":null,"abstract":"ABSTRACT Aronia melanocarpa berries are abundant in polyphenolic compounds. After juice production, the pomace of pressed berries still contains a substantial amount of polyphenolic compounds. For efficient utilization of A. melanocarpa berries and the enhancement of polyphenolic compound yields in Aronia melanocarpa pomace (AMP), total phenolics (TP) and total flavonoids (TF) from AMP were extracted, using ultrasound-assisted aqueous two-phase system (UAE-ATPS) extraction method. First, the influences of ammonium sulfate concentration, ethanol–water ratio, ultrasonic time, and ultrasonic power on TP and TF yields were investigated. On this basis, process variables such as ammonium sulfate concentration (0.30–0.35 g mL−1), ethanol–water ratio (0.6–0.8), ultrasonic time (40–60 min), and ultrasonic power (175–225 W) were further optimized by implementing Box–Benhnken design with response surface methodology. The experimental results showed that optimal extraction conditions of TP from AMP were as follows: ammonium sulfate concentration of 0.324 g mL−1, ethanol–water ratio of 0.69, ultrasonic time of 52 min, and ultrasonic power of 200 W. Meanwhile, ammonium sulfate concentration of 0.320 g mL−1, ethanol–water ratio of 0.71, ultrasonic time of 50 min, and ultrasonic power of 200 W were determined as optimum extraction conditions of TF in AMP. Experimental validation was performed, where TP and TF yields reached 68.15 ± 1.04 and 11.67 ± 0.63 mg g−1, respectively. Close agreement was found between experimental and predicted values. Overall, the present results demonstrated that ultrasound-assisted aqueous two-phase system extraction method was successfully used to extract total phenolics and flavonoids in A. melanocarpa pomace.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology\",\"authors\":\"Yanyang Xu, Yang Qiu, Hui Ren, D. Ju, Hong-Lei Jia\",\"doi\":\"10.1080/10826068.2016.1244684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Aronia melanocarpa berries are abundant in polyphenolic compounds. After juice production, the pomace of pressed berries still contains a substantial amount of polyphenolic compounds. For efficient utilization of A. melanocarpa berries and the enhancement of polyphenolic compound yields in Aronia melanocarpa pomace (AMP), total phenolics (TP) and total flavonoids (TF) from AMP were extracted, using ultrasound-assisted aqueous two-phase system (UAE-ATPS) extraction method. First, the influences of ammonium sulfate concentration, ethanol–water ratio, ultrasonic time, and ultrasonic power on TP and TF yields were investigated. On this basis, process variables such as ammonium sulfate concentration (0.30–0.35 g mL−1), ethanol–water ratio (0.6–0.8), ultrasonic time (40–60 min), and ultrasonic power (175–225 W) were further optimized by implementing Box–Benhnken design with response surface methodology. The experimental results showed that optimal extraction conditions of TP from AMP were as follows: ammonium sulfate concentration of 0.324 g mL−1, ethanol–water ratio of 0.69, ultrasonic time of 52 min, and ultrasonic power of 200 W. Meanwhile, ammonium sulfate concentration of 0.320 g mL−1, ethanol–water ratio of 0.71, ultrasonic time of 50 min, and ultrasonic power of 200 W were determined as optimum extraction conditions of TF in AMP. Experimental validation was performed, where TP and TF yields reached 68.15 ± 1.04 and 11.67 ± 0.63 mg g−1, respectively. Close agreement was found between experimental and predicted values. Overall, the present results demonstrated that ultrasound-assisted aqueous two-phase system extraction method was successfully used to extract total phenolics and flavonoids in A. melanocarpa pomace.\",\"PeriodicalId\":20393,\"journal\":{\"name\":\"Preparative Biochemistry and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2016.1244684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2016.1244684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
摘要
黑桫椤果实含有丰富的多酚类化合物。榨汁后,榨出的果渣仍然含有大量的多酚类化合物。为有效利用黑果莓果实,提高黑果莓果渣(AMP)中多酚类化合物的得率,采用超声辅助双水相萃取法(UAE-ATPS)提取AMP中的总酚类物质(TP)和总黄酮(TF)。首先,考察了硫酸铵浓度、乙醇水比、超声时间和超声功率对TP和TF产率的影响。在此基础上,采用Box-Benhnken设计,结合响应面法对硫酸铵浓度(0.30 ~ 0.35 g mL−1)、乙醇水比(0.6 ~ 0.8)、超声时间(40 ~ 60 min)、超声功率(175 ~ 225 W)等工艺参数进行进一步优化。实验结果表明,从AMP中提取TP的最佳工艺条件为:硫酸铵浓度0.324 g mL−1,乙醇-水比0.69,超声时间52 min,超声功率200 W。同时,确定了硫酸铵浓度为0.320 g mL−1、乙醇水比为0.71、超声时间为50 min、超声功率为200 W为提取AMP中总皂苷的最佳条件。实验验证,总皂苷和总皂苷得率分别为68.15±1.04和11.67±0.63 mg g−1。实验值与预测值非常吻合。综上所述,超声辅助双水相萃取法可有效提取黑桃果渣中的总酚类物质和总黄酮。
Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology
ABSTRACT Aronia melanocarpa berries are abundant in polyphenolic compounds. After juice production, the pomace of pressed berries still contains a substantial amount of polyphenolic compounds. For efficient utilization of A. melanocarpa berries and the enhancement of polyphenolic compound yields in Aronia melanocarpa pomace (AMP), total phenolics (TP) and total flavonoids (TF) from AMP were extracted, using ultrasound-assisted aqueous two-phase system (UAE-ATPS) extraction method. First, the influences of ammonium sulfate concentration, ethanol–water ratio, ultrasonic time, and ultrasonic power on TP and TF yields were investigated. On this basis, process variables such as ammonium sulfate concentration (0.30–0.35 g mL−1), ethanol–water ratio (0.6–0.8), ultrasonic time (40–60 min), and ultrasonic power (175–225 W) were further optimized by implementing Box–Benhnken design with response surface methodology. The experimental results showed that optimal extraction conditions of TP from AMP were as follows: ammonium sulfate concentration of 0.324 g mL−1, ethanol–water ratio of 0.69, ultrasonic time of 52 min, and ultrasonic power of 200 W. Meanwhile, ammonium sulfate concentration of 0.320 g mL−1, ethanol–water ratio of 0.71, ultrasonic time of 50 min, and ultrasonic power of 200 W were determined as optimum extraction conditions of TF in AMP. Experimental validation was performed, where TP and TF yields reached 68.15 ± 1.04 and 11.67 ± 0.63 mg g−1, respectively. Close agreement was found between experimental and predicted values. Overall, the present results demonstrated that ultrasound-assisted aqueous two-phase system extraction method was successfully used to extract total phenolics and flavonoids in A. melanocarpa pomace.