{"title":"从p - s转换波的双折射看地壳各向异性:与p波各向异性相关的偏置","authors":"Jeffrey Park, Xiaoran Chen, V. Levin","doi":"10.4401/ag-8882","DOIUrl":null,"url":null,"abstract":"Many researchers have used the birefringence of P‑to‑S converted waves from the Moho discontinuity to constrain the anisotropy of Earth’s crust. However, this practice ignores the substantial influence that anisotropy has on the initial amplitude of the converted wave, which adds to the splitting acquired during its propagation from Moho to the seismometer. We find that large variations in Ps birefringence estimates with back-azimuth occur theoretically in the presence of P‑wave anisotropy, which normally accompanies S‑wave anisotropy. The variations are largest for crustal anisotropy with a tilted axis of symmetry, a geometry that is often neglected in birefringence interpretations, but is commonly found in Earth’s crust. We simulated globally-distributed P‑coda datasets for 36 distinct 4‑layer crustal models with combinations of elliptical shear anisotropy or compressional anisotropy, and also incorporated the higher-order anisotropic Backus parameter C. We tested both horizontal and tilted symmetry-axis geometries and tested the birefringence tradeoff associated with Ps converted phases at the top and bottom of a thin high‑ or low‑velocity basal layer. We computed composite receiver functions (RFs) with harmonic regression over back azimuth, using multipletaper correlation with moveout corrections for the epicentral distances of 471 events, to simulate a realistic data set. We estimate Ps birefringence from the radial and transverse RFs, a strategy that is similar to previous studies. We find that Ps splitting can be a useful indicator of bulk crustal anisotropy only under restricted circumstance, either in media with no compressional anisotropy, or if the symmetry axis is horizontal throughout. In other, more-realistic cases, the inferred fast polarization of Ps birefringence estimated from synthetic RFs tends either to drift with back-azimuth, form weak penalty-function minima, or return splitting times that depend on the thickness of an anisotropic layer, rather than the birefringence accumulated within it. ","PeriodicalId":50766,"journal":{"name":"Annals of Geophysics","volume":"96 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Crustal Anisotropy from the Birefringence of P-to-S Converted Waves: Bias Associated with P-Wave Anisotropy\",\"authors\":\"Jeffrey Park, Xiaoran Chen, V. Levin\",\"doi\":\"10.4401/ag-8882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many researchers have used the birefringence of P‑to‑S converted waves from the Moho discontinuity to constrain the anisotropy of Earth’s crust. However, this practice ignores the substantial influence that anisotropy has on the initial amplitude of the converted wave, which adds to the splitting acquired during its propagation from Moho to the seismometer. We find that large variations in Ps birefringence estimates with back-azimuth occur theoretically in the presence of P‑wave anisotropy, which normally accompanies S‑wave anisotropy. The variations are largest for crustal anisotropy with a tilted axis of symmetry, a geometry that is often neglected in birefringence interpretations, but is commonly found in Earth’s crust. We simulated globally-distributed P‑coda datasets for 36 distinct 4‑layer crustal models with combinations of elliptical shear anisotropy or compressional anisotropy, and also incorporated the higher-order anisotropic Backus parameter C. We tested both horizontal and tilted symmetry-axis geometries and tested the birefringence tradeoff associated with Ps converted phases at the top and bottom of a thin high‑ or low‑velocity basal layer. We computed composite receiver functions (RFs) with harmonic regression over back azimuth, using multipletaper correlation with moveout corrections for the epicentral distances of 471 events, to simulate a realistic data set. We estimate Ps birefringence from the radial and transverse RFs, a strategy that is similar to previous studies. We find that Ps splitting can be a useful indicator of bulk crustal anisotropy only under restricted circumstance, either in media with no compressional anisotropy, or if the symmetry axis is horizontal throughout. In other, more-realistic cases, the inferred fast polarization of Ps birefringence estimated from synthetic RFs tends either to drift with back-azimuth, form weak penalty-function minima, or return splitting times that depend on the thickness of an anisotropic layer, rather than the birefringence accumulated within it. \",\"PeriodicalId\":50766,\"journal\":{\"name\":\"Annals of Geophysics\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4401/ag-8882\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4401/ag-8882","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
摘要
许多研究人员利用来自莫霍不连续的P - to - S转换波的双折射来约束地壳的各向异性。然而,这种做法忽略了各向异性对转换波的初始振幅的实质性影响,这增加了转换波从莫霍向地震仪传播过程中获得的分裂。我们发现,在P波各向异性存在的情况下,理论上Ps双折射估计的反向变化很大,而P波各向异性通常伴随着S波各向异性。这种变化在对称轴倾斜的地壳各向异性中最大,这种几何形状在双折射解释中经常被忽略,但在地壳中很常见。我们模拟了36个不同的4层地壳模型的全球分布的P - coda数据集,这些模型结合了椭圆剪切各向异性或挤压各向异性,并结合了高阶各向异性Backus参数c。我们测试了水平和倾斜对称轴几何形状,并测试了在薄的高速或低速基底层的顶部和底部与P转换相相关的双折射权衡。我们计算了复合接收函数(rf),在反向方位角上进行谐波回归,使用471个事件的震中距离的多锥度相关和移出校正,以模拟真实的数据集。我们从径向和横向rf中估计Ps双折射,这是一种类似于先前研究的策略。我们发现,只有在有限的情况下,无论是在没有挤压各向异性的介质中,还是在对称轴自始至终是水平的情况下,Ps分裂才能成为一个有用的地壳各向异性指标。在其他更现实的情况下,从合成rf估计的Ps双折射的推断快速偏振倾向于随反向方向漂移,形成弱惩罚函数最小值,或者返回分裂时间,这取决于各向异性层的厚度,而不是其中积累的双折射。
Crustal Anisotropy from the Birefringence of P-to-S Converted Waves: Bias Associated with P-Wave Anisotropy
Many researchers have used the birefringence of P‑to‑S converted waves from the Moho discontinuity to constrain the anisotropy of Earth’s crust. However, this practice ignores the substantial influence that anisotropy has on the initial amplitude of the converted wave, which adds to the splitting acquired during its propagation from Moho to the seismometer. We find that large variations in Ps birefringence estimates with back-azimuth occur theoretically in the presence of P‑wave anisotropy, which normally accompanies S‑wave anisotropy. The variations are largest for crustal anisotropy with a tilted axis of symmetry, a geometry that is often neglected in birefringence interpretations, but is commonly found in Earth’s crust. We simulated globally-distributed P‑coda datasets for 36 distinct 4‑layer crustal models with combinations of elliptical shear anisotropy or compressional anisotropy, and also incorporated the higher-order anisotropic Backus parameter C. We tested both horizontal and tilted symmetry-axis geometries and tested the birefringence tradeoff associated with Ps converted phases at the top and bottom of a thin high‑ or low‑velocity basal layer. We computed composite receiver functions (RFs) with harmonic regression over back azimuth, using multipletaper correlation with moveout corrections for the epicentral distances of 471 events, to simulate a realistic data set. We estimate Ps birefringence from the radial and transverse RFs, a strategy that is similar to previous studies. We find that Ps splitting can be a useful indicator of bulk crustal anisotropy only under restricted circumstance, either in media with no compressional anisotropy, or if the symmetry axis is horizontal throughout. In other, more-realistic cases, the inferred fast polarization of Ps birefringence estimated from synthetic RFs tends either to drift with back-azimuth, form weak penalty-function minima, or return splitting times that depend on the thickness of an anisotropic layer, rather than the birefringence accumulated within it.
期刊介绍:
Annals of Geophysics is an international, peer-reviewed, open-access, online journal. Annals of Geophysics welcomes contributions on primary research on Seismology, Geodesy, Volcanology, Physics and Chemistry of the Earth, Oceanography and Climatology, Geomagnetism and Paleomagnetism, Geodynamics and Tectonophysics, Physics and Chemistry of the Atmosphere.
It provides:
-Open-access, freely accessible online (authors retain copyright)
-Fast publication times
-Peer review by expert, practicing researchers
-Free of charge publication
-Post-publication tools to indicate quality and impact
-Worldwide media coverage.
Annals of Geophysics is published by Istituto Nazionale di Geofisica e Vulcanologia (INGV), nonprofit public research institution.