网络世界中公众对科学的理解

IF 0.4 Q4 EDUCATION & EDUCATIONAL RESEARCH
Svetlomir Zdravkov
{"title":"网络世界中公众对科学的理解","authors":"Svetlomir Zdravkov","doi":"10.53656/str2022-3-4-pub","DOIUrl":null,"url":null,"abstract":"Internet mediation is playing an increasingly important role in informing the public about scientific news. Thus, it became the main source of data that formed the public’s image of science. The digital traces that users leave on many online platforms are an important source of empirical data that is barely being used; it may reveal new ways to connect science and society. That is why we propose a new conceptual approach within the Public Understanding of Science, which will lay the foundations for future empirical research. It integrates the combination of Actor Network Theory and machine learning in the analysis of large text arrays, which allow both quantitative measurement and qualitative analysis of popular scientific discussions in the online space.","PeriodicalId":40820,"journal":{"name":"Strategies for Policy in Science and Education-Strategii na Obrazovatelnata i Nauchnata Politika","volume":"2 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Public Understanding of Science in the Network World\",\"authors\":\"Svetlomir Zdravkov\",\"doi\":\"10.53656/str2022-3-4-pub\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet mediation is playing an increasingly important role in informing the public about scientific news. Thus, it became the main source of data that formed the public’s image of science. The digital traces that users leave on many online platforms are an important source of empirical data that is barely being used; it may reveal new ways to connect science and society. That is why we propose a new conceptual approach within the Public Understanding of Science, which will lay the foundations for future empirical research. It integrates the combination of Actor Network Theory and machine learning in the analysis of large text arrays, which allow both quantitative measurement and qualitative analysis of popular scientific discussions in the online space.\",\"PeriodicalId\":40820,\"journal\":{\"name\":\"Strategies for Policy in Science and Education-Strategii na Obrazovatelnata i Nauchnata Politika\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strategies for Policy in Science and Education-Strategii na Obrazovatelnata i Nauchnata Politika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53656/str2022-3-4-pub\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategies for Policy in Science and Education-Strategii na Obrazovatelnata i Nauchnata Politika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53656/str2022-3-4-pub","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

互联网媒介在向公众传播科学新闻方面发挥着越来越重要的作用。因此,它成为形成公众科学形象的主要数据来源。用户在许多在线平台上留下的数字痕迹是很少被使用的经验数据的重要来源;它可能会揭示连接科学与社会的新途径。这就是为什么我们在《公众对科学的理解》中提出了一种新的概念方法,这将为未来的实证研究奠定基础。它将Actor网络理论和机器学习结合在大型文本数组的分析中,允许对在线空间中的流行科学讨论进行定量测量和定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Public Understanding of Science in the Network World
Internet mediation is playing an increasingly important role in informing the public about scientific news. Thus, it became the main source of data that formed the public’s image of science. The digital traces that users leave on many online platforms are an important source of empirical data that is barely being used; it may reveal new ways to connect science and society. That is why we propose a new conceptual approach within the Public Understanding of Science, which will lay the foundations for future empirical research. It integrates the combination of Actor Network Theory and machine learning in the analysis of large text arrays, which allow both quantitative measurement and qualitative analysis of popular scientific discussions in the online space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信