基于联合模型的口语理解任务注意

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xin Liu, RuiHua Qi, Lin Shao
{"title":"基于联合模型的口语理解任务注意","authors":"Xin Liu, RuiHua Qi, Lin Shao","doi":"10.4018/IJDCF.2020100103","DOIUrl":null,"url":null,"abstract":"Intent determination (ID) and slot filling (SF) are two critical steps in the spoken language understanding (SLU) task. Conventionally, most previous work has been done for each subtask respectively. To exploit the dependencies between intent label and slot sequence, as well as deal with both tasks simultaneously, this paper proposes a joint model (ABLCJ), which is trained by a united loss function. In order to utilize both past and future input features efficiently, a joint model based Bi-LSTM with contextual information is employed to learn the representation of each step, which are shared by two tasks and the model. This paper also uses sentence-level tag information learned from a CRF layer to predict the tag of each slot. Meanwhile, a submodule-based attention is employed to capture global features of a sentence for intent classification. The experimental results demonstrate that ABLCJ achieves competitive performance in the Shared Task 4 of NLPCC 2018.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"23 1","pages":"32-43"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Model-Based Attention for Spoken Language Understanding Task\",\"authors\":\"Xin Liu, RuiHua Qi, Lin Shao\",\"doi\":\"10.4018/IJDCF.2020100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intent determination (ID) and slot filling (SF) are two critical steps in the spoken language understanding (SLU) task. Conventionally, most previous work has been done for each subtask respectively. To exploit the dependencies between intent label and slot sequence, as well as deal with both tasks simultaneously, this paper proposes a joint model (ABLCJ), which is trained by a united loss function. In order to utilize both past and future input features efficiently, a joint model based Bi-LSTM with contextual information is employed to learn the representation of each step, which are shared by two tasks and the model. This paper also uses sentence-level tag information learned from a CRF layer to predict the tag of each slot. Meanwhile, a submodule-based attention is employed to capture global features of a sentence for intent classification. The experimental results demonstrate that ABLCJ achieves competitive performance in the Shared Task 4 of NLPCC 2018.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":\"23 1\",\"pages\":\"32-43\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDCF.2020100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.2020100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

意图确定(ID)和插槽填充(SF)是口语理解(SLU)任务中的两个关键步骤。按照惯例,之前的大部分工作都是针对每个子任务分别完成的。为了利用意图标签和槽序列之间的依赖关系,并同时处理这两个任务,本文提出了一种联合模型(ABLCJ),该模型由统一损失函数训练。为了有效地利用过去和未来的输入特征,采用基于上下文信息的联合模型Bi-LSTM来学习每个步骤的表示,这些步骤由两个任务和模型共享。本文还使用从CRF层学习到的句子级标签信息来预测每个槽的标签。同时,采用基于子模块的注意捕获句子的全局特征,进行意图分类。实验结果表明,ABLCJ在NLPCC 2018的共享任务4中取得了具有竞争力的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Model-Based Attention for Spoken Language Understanding Task
Intent determination (ID) and slot filling (SF) are two critical steps in the spoken language understanding (SLU) task. Conventionally, most previous work has been done for each subtask respectively. To exploit the dependencies between intent label and slot sequence, as well as deal with both tasks simultaneously, this paper proposes a joint model (ABLCJ), which is trained by a united loss function. In order to utilize both past and future input features efficiently, a joint model based Bi-LSTM with contextual information is employed to learn the representation of each step, which are shared by two tasks and the model. This paper also uses sentence-level tag information learned from a CRF layer to predict the tag of each slot. Meanwhile, a submodule-based attention is employed to capture global features of a sentence for intent classification. The experimental results demonstrate that ABLCJ achieves competitive performance in the Shared Task 4 of NLPCC 2018.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信