基于两步as聚类和集成神经网络模型的冠状病毒检测

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ahmed Hamza Osman
{"title":"基于两步as聚类和集成神经网络模型的冠状病毒检测","authors":"Ahmed Hamza Osman","doi":"10.32604/cmc.2022.024145","DOIUrl":null,"url":null,"abstract":"This study presents a model of computer-aided intelligence capable of automatically detecting positive COVID-19 instances for use in regular medical applications. The proposed model is based on an Ensemble boosting Neural Network architecture and can automatically detect discriminatory features on chest X-ray images through Two Step-As clustering algorithm with rich filter families, ion and weight-sharing properties. In contrast to the generally used transformational learning approach, the proposed model was trained before and after clustering. The compilation procedure divides the datasets samples and categories into numerous sub-samples and subcategories and then assigns new group labels to each new group, with each subject group displayed as a distinct category. The retrieved characteristics discriminant cases were used to feed the Multiple Neural Network method, which was then utilised to classify the instances. The Two Step-AS clustering method has been modified by pre-aggregating the dataset before applying Multiple Neural Network algorithm to detect COVID-19 cases from chest X-ray findings. Models for Multiple Neural Network and Two Step-As clustering algorithms were optimised by utilising Ensemble Bootstrap Aggregating algorithm to reduce the number of hyper parameters they include. The tests were carried out using the COVID-19 public radiology database, and a cross-validation method ensured accuracy. The proposed classifier with an accuracy of 98.02% percent was found to provide the most efficient outcomes possible. The result is a low-cost, quick and reliable intelligence tool for detecting COVID-19 infection. © 2022 Tech Science Press. All rights reserved.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"17 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coronavirus Detection Using Two Step-AS Clustering and Ensemble Neural Network Model\",\"authors\":\"Ahmed Hamza Osman\",\"doi\":\"10.32604/cmc.2022.024145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a model of computer-aided intelligence capable of automatically detecting positive COVID-19 instances for use in regular medical applications. The proposed model is based on an Ensemble boosting Neural Network architecture and can automatically detect discriminatory features on chest X-ray images through Two Step-As clustering algorithm with rich filter families, ion and weight-sharing properties. In contrast to the generally used transformational learning approach, the proposed model was trained before and after clustering. The compilation procedure divides the datasets samples and categories into numerous sub-samples and subcategories and then assigns new group labels to each new group, with each subject group displayed as a distinct category. The retrieved characteristics discriminant cases were used to feed the Multiple Neural Network method, which was then utilised to classify the instances. The Two Step-AS clustering method has been modified by pre-aggregating the dataset before applying Multiple Neural Network algorithm to detect COVID-19 cases from chest X-ray findings. Models for Multiple Neural Network and Two Step-As clustering algorithms were optimised by utilising Ensemble Bootstrap Aggregating algorithm to reduce the number of hyper parameters they include. The tests were carried out using the COVID-19 public radiology database, and a cross-validation method ensured accuracy. The proposed classifier with an accuracy of 98.02% percent was found to provide the most efficient outcomes possible. The result is a low-cost, quick and reliable intelligence tool for detecting COVID-19 infection. © 2022 Tech Science Press. All rights reserved.\",\"PeriodicalId\":10440,\"journal\":{\"name\":\"Cmc-computers Materials & Continua\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cmc-computers Materials & Continua\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32604/cmc.2022.024145\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.024145","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种计算机辅助智能模型,能够自动检测COVID-19阳性病例,用于常规医疗应用。该模型基于集成增强神经网络架构,通过具有丰富滤波器族、离子和权值共享特性的Two Step-As聚类算法自动检测胸片图像的歧视特征。与一般使用的转换学习方法不同,本文提出的模型在聚类之前和之后都进行了训练。编译过程将数据集样本和类别划分为许多子样本和子类别,然后为每个新组分配新的组标签,每个主题组显示为一个不同的类别。将检索到的特征判别案例馈送到多神经网络方法,然后利用多神经网络方法对实例进行分类。对Two Step-AS聚类方法进行改进,对数据集进行预聚合,然后应用多重神经网络算法从胸部x线图像中检测COVID-19病例。利用集成自举聚合算法对多神经网络模型和两步a聚类算法进行了优化,减少了它们包含的超参数数量。测试使用COVID-19公共放射学数据库进行,并采用交叉验证方法确保准确性。所提出的分类器的准确率为98.02%,可以提供最有效的结果。结果是一种低成本、快速、可靠的检测COVID-19感染的智能工具。©2022科技科学出版社。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coronavirus Detection Using Two Step-AS Clustering and Ensemble Neural Network Model
This study presents a model of computer-aided intelligence capable of automatically detecting positive COVID-19 instances for use in regular medical applications. The proposed model is based on an Ensemble boosting Neural Network architecture and can automatically detect discriminatory features on chest X-ray images through Two Step-As clustering algorithm with rich filter families, ion and weight-sharing properties. In contrast to the generally used transformational learning approach, the proposed model was trained before and after clustering. The compilation procedure divides the datasets samples and categories into numerous sub-samples and subcategories and then assigns new group labels to each new group, with each subject group displayed as a distinct category. The retrieved characteristics discriminant cases were used to feed the Multiple Neural Network method, which was then utilised to classify the instances. The Two Step-AS clustering method has been modified by pre-aggregating the dataset before applying Multiple Neural Network algorithm to detect COVID-19 cases from chest X-ray findings. Models for Multiple Neural Network and Two Step-As clustering algorithms were optimised by utilising Ensemble Bootstrap Aggregating algorithm to reduce the number of hyper parameters they include. The tests were carried out using the COVID-19 public radiology database, and a cross-validation method ensured accuracy. The proposed classifier with an accuracy of 98.02% percent was found to provide the most efficient outcomes possible. The result is a low-cost, quick and reliable intelligence tool for detecting COVID-19 infection. © 2022 Tech Science Press. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cmc-computers Materials & Continua
Cmc-computers Materials & Continua 工程技术-材料科学:综合
CiteScore
5.30
自引率
19.40%
发文量
345
审稿时长
1 months
期刊介绍: This journal publishes original research papers in the areas of computer networks, artificial intelligence, big data management, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, data analysis, modeling, and engineering of designing and manufacturing of modern functional and multifunctional materials. Novel high performance computing methods, big data analysis, and artificial intelligence that advance material technologies are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信