基于电网频率及其多频率分量的电网分类

Md. Arif Uz Zaman, Shoilie Chakma
{"title":"基于电网频率及其多频率分量的电网分类","authors":"Md. Arif Uz Zaman, Shoilie Chakma","doi":"10.1109/TENSYMP50017.2020.9230767","DOIUrl":null,"url":null,"abstract":"Monitoring and optimizing the power grids are one of the most important tasks in electrical engineering. In this paper we would present an approach to detect power grid locations using Electrical Network Frequency and multiple frequency components associated with it. It is based on frequency domain method. We have used some different approach to detect the grids. We have build the system using machine learning simulation on Matlab. Performance evaluation in terms of number of correct detection and false alarms reveals the effect of system performance.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"313 1","pages":"513-516"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Grid Classification through Electrical Network Frequency and its Multiple Frequency Components\",\"authors\":\"Md. Arif Uz Zaman, Shoilie Chakma\",\"doi\":\"10.1109/TENSYMP50017.2020.9230767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring and optimizing the power grids are one of the most important tasks in electrical engineering. In this paper we would present an approach to detect power grid locations using Electrical Network Frequency and multiple frequency components associated with it. It is based on frequency domain method. We have used some different approach to detect the grids. We have build the system using machine learning simulation on Matlab. Performance evaluation in terms of number of correct detection and false alarms reveals the effect of system performance.\",\"PeriodicalId\":6721,\"journal\":{\"name\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"313 1\",\"pages\":\"513-516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP50017.2020.9230767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电网的监测与优化是电气工程中的重要任务之一。在本文中,我们将提出一种利用电网频率和与之相关的多个频率分量来检测电网位置的方法。它是基于频域方法的。我们使用了一些不同的方法来检测网格。我们在Matlab上使用机器学习仿真构建了该系统。通过正确检测次数和虚警次数对系统性能进行评价,揭示系统性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Grid Classification through Electrical Network Frequency and its Multiple Frequency Components
Monitoring and optimizing the power grids are one of the most important tasks in electrical engineering. In this paper we would present an approach to detect power grid locations using Electrical Network Frequency and multiple frequency components associated with it. It is based on frequency domain method. We have used some different approach to detect the grids. We have build the system using machine learning simulation on Matlab. Performance evaluation in terms of number of correct detection and false alarms reveals the effect of system performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信