三维自由粒子的三次和球面对称Shannon信息熵和

S. Singh, A. Saha
{"title":"三维自由粒子的三次和球面对称Shannon信息熵和","authors":"S. Singh, A. Saha","doi":"10.3329/jsr.v15i1.60067","DOIUrl":null,"url":null,"abstract":"In this paper, the plane wave solutions of a free particle in three dimensions for Cubical and Spherical Symmetry have been considered. The coordinate space wave functions for the Cubical and Spherical Symmetry are obtained by solving the Schrdinger differential equation. The momentum space wave function is obtained by using the operator form of an observable in the case of Cubical Symmetry. For Spherical Symmetry, the same is obtained by taking the Fourier transform of the respective coordinate space wave function. The wave functions have been used to constitute probability densities in coordinate and momentum space for both the symmetries. Further, the Shannon information entropy has been computed both in coordinate and momentum space respectively for  (L is the length of the side of the cubical box) values for Cubical Symmetry and for  values in Spherical Symmetry keeping (k is the wave vector and p is the momentum of the free particle) constant. The values obtained for the Shannon information entropies are found to satisfy the Bialynicki-Birula and Myceilski (BBM) inequality at larger  values () in case of Cubical Symmetry and for values of  and  in Spherical Symmetry.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shannon Information Entropy Sum of a Free Particle in Three Dimensions Using Cubical and Spherical Symmetry\",\"authors\":\"S. Singh, A. Saha\",\"doi\":\"10.3329/jsr.v15i1.60067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the plane wave solutions of a free particle in three dimensions for Cubical and Spherical Symmetry have been considered. The coordinate space wave functions for the Cubical and Spherical Symmetry are obtained by solving the Schrdinger differential equation. The momentum space wave function is obtained by using the operator form of an observable in the case of Cubical Symmetry. For Spherical Symmetry, the same is obtained by taking the Fourier transform of the respective coordinate space wave function. The wave functions have been used to constitute probability densities in coordinate and momentum space for both the symmetries. Further, the Shannon information entropy has been computed both in coordinate and momentum space respectively for  (L is the length of the side of the cubical box) values for Cubical Symmetry and for  values in Spherical Symmetry keeping (k is the wave vector and p is the momentum of the free particle) constant. The values obtained for the Shannon information entropies are found to satisfy the Bialynicki-Birula and Myceilski (BBM) inequality at larger  values () in case of Cubical Symmetry and for values of  and  in Spherical Symmetry.\",\"PeriodicalId\":16984,\"journal\":{\"name\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF SCIENTIFIC RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jsr.v15i1.60067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v15i1.60067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三次对称和球对称的三维自由粒子的平面波解。通过求解薛定谔微分方程,得到了三次对称和球次对称的空间坐标波函数。在立方对称的情况下,利用可观测值的算子形式得到了动量空间波函数。对于球对称,通过对各自的坐标空间波函数进行傅里叶变换可以得到相同的结果。用波函数在坐标空间和动量空间中构成两种对称的概率密度。此外,在坐标空间和动量空间中分别计算了立方体对称(L为立方箱边的长度)值和球对称(k为波矢量,p为自由粒子的动量)保持常数的香农信息熵。得到的Shannon信息熵值在立方体对称和球对称的情况下满足Bialynicki-Birula和Myceilski (BBM)不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shannon Information Entropy Sum of a Free Particle in Three Dimensions Using Cubical and Spherical Symmetry
In this paper, the plane wave solutions of a free particle in three dimensions for Cubical and Spherical Symmetry have been considered. The coordinate space wave functions for the Cubical and Spherical Symmetry are obtained by solving the Schrdinger differential equation. The momentum space wave function is obtained by using the operator form of an observable in the case of Cubical Symmetry. For Spherical Symmetry, the same is obtained by taking the Fourier transform of the respective coordinate space wave function. The wave functions have been used to constitute probability densities in coordinate and momentum space for both the symmetries. Further, the Shannon information entropy has been computed both in coordinate and momentum space respectively for  (L is the length of the side of the cubical box) values for Cubical Symmetry and for  values in Spherical Symmetry keeping (k is the wave vector and p is the momentum of the free particle) constant. The values obtained for the Shannon information entropies are found to satisfy the Bialynicki-Birula and Myceilski (BBM) inequality at larger  values () in case of Cubical Symmetry and for values of  and  in Spherical Symmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
47
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信