{"title":"基于2015年国家课程修订的高中科学探究活动科学关键能力分析——以生命科学教材为例","authors":"송신철, K. Shim","doi":"10.15717/BIOEDU.2019.47.2.197","DOIUrl":null,"url":null,"abstract":"The students in secondary schools have been taught calculus as an important subject in mathematics. The order of chapters-the limit of a sequence followed by limit of a function, and differentiation and integration- is because the limit of a function and the limit of a sequence are required as prerequisites of differentiation and integration. Specifically, the limit of a sequence is used to define definite integral as the limit of the Riemann Sum. However, many researchers identified that students had difficulty in understanding the concept of definite integral defined as the limit of the Riemann Sum. Consequently, they suggested alternative ways to introduce definite integral. Based on these researches, the definition of definite integral in the 2015-Revised Curriculum is not a concept of the limit of the Riemann Sum, which was the definition of definite integral in the previous curriculum, but “F(b)-F(a)” for an indefinite integral F(x) of a function f(x) and real numbers a and b. This change gives rise to differences among ways of introducing definite integral and explaining the relationship between definite integral and area in each textbook. As a result of this study, we have identified that there are a variety of ways of introducing definite integral in each textbook and that ways of explaining the relationship between definite integral and area are affected by ways of introducing definite integral. We expect that this change can reduce the difficulties students face when learning the concept of definite integral.","PeriodicalId":84416,"journal":{"name":"Cell biology education","volume":"36 1 1","pages":"197-212"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis on the Science Key Competence of Inquiry Activity in High School Science according to 2015 Revised National Curriculum - A Case Study on Life Science Textbooks -\",\"authors\":\"송신철, K. Shim\",\"doi\":\"10.15717/BIOEDU.2019.47.2.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The students in secondary schools have been taught calculus as an important subject in mathematics. The order of chapters-the limit of a sequence followed by limit of a function, and differentiation and integration- is because the limit of a function and the limit of a sequence are required as prerequisites of differentiation and integration. Specifically, the limit of a sequence is used to define definite integral as the limit of the Riemann Sum. However, many researchers identified that students had difficulty in understanding the concept of definite integral defined as the limit of the Riemann Sum. Consequently, they suggested alternative ways to introduce definite integral. Based on these researches, the definition of definite integral in the 2015-Revised Curriculum is not a concept of the limit of the Riemann Sum, which was the definition of definite integral in the previous curriculum, but “F(b)-F(a)” for an indefinite integral F(x) of a function f(x) and real numbers a and b. This change gives rise to differences among ways of introducing definite integral and explaining the relationship between definite integral and area in each textbook. As a result of this study, we have identified that there are a variety of ways of introducing definite integral in each textbook and that ways of explaining the relationship between definite integral and area are affected by ways of introducing definite integral. We expect that this change can reduce the difficulties students face when learning the concept of definite integral.\",\"PeriodicalId\":84416,\"journal\":{\"name\":\"Cell biology education\",\"volume\":\"36 1 1\",\"pages\":\"197-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell biology education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15717/BIOEDU.2019.47.2.197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell biology education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15717/BIOEDU.2019.47.2.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis on the Science Key Competence of Inquiry Activity in High School Science according to 2015 Revised National Curriculum - A Case Study on Life Science Textbooks -
The students in secondary schools have been taught calculus as an important subject in mathematics. The order of chapters-the limit of a sequence followed by limit of a function, and differentiation and integration- is because the limit of a function and the limit of a sequence are required as prerequisites of differentiation and integration. Specifically, the limit of a sequence is used to define definite integral as the limit of the Riemann Sum. However, many researchers identified that students had difficulty in understanding the concept of definite integral defined as the limit of the Riemann Sum. Consequently, they suggested alternative ways to introduce definite integral. Based on these researches, the definition of definite integral in the 2015-Revised Curriculum is not a concept of the limit of the Riemann Sum, which was the definition of definite integral in the previous curriculum, but “F(b)-F(a)” for an indefinite integral F(x) of a function f(x) and real numbers a and b. This change gives rise to differences among ways of introducing definite integral and explaining the relationship between definite integral and area in each textbook. As a result of this study, we have identified that there are a variety of ways of introducing definite integral in each textbook and that ways of explaining the relationship between definite integral and area are affected by ways of introducing definite integral. We expect that this change can reduce the difficulties students face when learning the concept of definite integral.