Caifeng Deng, Yuxiao Chen, Xuan Zhao, Liukang Yu, Yongbing Xiao, Hui Li, Yuqing Zhang, Kelong Ai, Dongfang Zhou, Xiaochun Bai, Tao Gong, Jie Wei*, Chao Zeng* and Guanghua Lei*,
{"title":"双靶向滑膜巨噬细胞和成纤维细胞的凋亡中性粒细胞膜伪装脂质体减轻骨关节炎","authors":"Caifeng Deng, Yuxiao Chen, Xuan Zhao, Liukang Yu, Yongbing Xiao, Hui Li, Yuqing Zhang, Kelong Ai, Dongfang Zhou, Xiaochun Bai, Tao Gong, Jie Wei*, Chao Zeng* and Guanghua Lei*, ","doi":"10.1021/acsami.3c05861","DOIUrl":null,"url":null,"abstract":"<p >No current pharmacological approach is capable of simultaneously inhibiting the symptomatology and structural progression of osteoarthritis. M1 macrophages and activated synovial fibroblasts (SFs) mutually contribute to the propagation of joint pain and cartilage destruction in osteoarthritis. Here, we report the engineering of an apoptotic neutrophil membrane-camouflaged liposome (termed “NM@Lip”) for precise delivery of triamcinolone acetonide (TA) by dually targeting M1 macrophages and activated SFs in osteoarthritic joints. NM@Lip has a high cellular uptake in M1 macrophages and activated SFs. Furthermore, TA-loaded NM@Lip (TA-NM@Lip) effectively repolarizes M1 macrophages to the M2 phenotype and transforms pathological SFs to the deactivated phenotype by inhibiting the PI3K/Akt pathway. NM@Lip retains in the joint for up to 28 days and selectively distributes into M1 macrophages and activated SFs in synovium with low distribution in cartilage. TA-NM@Lip decreases the levels of pro-inflammatory cytokines, chemokines, and cartilage-degrading enzymes in osteoarthritic joints. In a rodent model of osteoarthritis-related pain, a single intra-articular TA-NM@Lip injection attenuates synovitis effectively and achieves complete pain relief with long-lasting effects. In a rodent model of osteoarthritis-related joint degeneration, repeated intra-articular TA-NM@Lip injections induce no obvious cartilage damage and effectively attenuate cartilage degeneration. Taken together, TA-NM@Lip represents a promising nanotherapeutic approach for osteoarthritis therapy.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 33","pages":"39064–39080"},"PeriodicalIF":8.2000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Apoptotic Neutrophil Membrane-Camouflaged Liposomes for Dually Targeting Synovial Macrophages and Fibroblasts to Attenuate Osteoarthritis\",\"authors\":\"Caifeng Deng, Yuxiao Chen, Xuan Zhao, Liukang Yu, Yongbing Xiao, Hui Li, Yuqing Zhang, Kelong Ai, Dongfang Zhou, Xiaochun Bai, Tao Gong, Jie Wei*, Chao Zeng* and Guanghua Lei*, \",\"doi\":\"10.1021/acsami.3c05861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >No current pharmacological approach is capable of simultaneously inhibiting the symptomatology and structural progression of osteoarthritis. M1 macrophages and activated synovial fibroblasts (SFs) mutually contribute to the propagation of joint pain and cartilage destruction in osteoarthritis. Here, we report the engineering of an apoptotic neutrophil membrane-camouflaged liposome (termed “NM@Lip”) for precise delivery of triamcinolone acetonide (TA) by dually targeting M1 macrophages and activated SFs in osteoarthritic joints. NM@Lip has a high cellular uptake in M1 macrophages and activated SFs. Furthermore, TA-loaded NM@Lip (TA-NM@Lip) effectively repolarizes M1 macrophages to the M2 phenotype and transforms pathological SFs to the deactivated phenotype by inhibiting the PI3K/Akt pathway. NM@Lip retains in the joint for up to 28 days and selectively distributes into M1 macrophages and activated SFs in synovium with low distribution in cartilage. TA-NM@Lip decreases the levels of pro-inflammatory cytokines, chemokines, and cartilage-degrading enzymes in osteoarthritic joints. In a rodent model of osteoarthritis-related pain, a single intra-articular TA-NM@Lip injection attenuates synovitis effectively and achieves complete pain relief with long-lasting effects. In a rodent model of osteoarthritis-related joint degeneration, repeated intra-articular TA-NM@Lip injections induce no obvious cartilage damage and effectively attenuate cartilage degeneration. Taken together, TA-NM@Lip represents a promising nanotherapeutic approach for osteoarthritis therapy.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"15 33\",\"pages\":\"39064–39080\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.3c05861\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c05861","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Apoptotic Neutrophil Membrane-Camouflaged Liposomes for Dually Targeting Synovial Macrophages and Fibroblasts to Attenuate Osteoarthritis
No current pharmacological approach is capable of simultaneously inhibiting the symptomatology and structural progression of osteoarthritis. M1 macrophages and activated synovial fibroblasts (SFs) mutually contribute to the propagation of joint pain and cartilage destruction in osteoarthritis. Here, we report the engineering of an apoptotic neutrophil membrane-camouflaged liposome (termed “NM@Lip”) for precise delivery of triamcinolone acetonide (TA) by dually targeting M1 macrophages and activated SFs in osteoarthritic joints. NM@Lip has a high cellular uptake in M1 macrophages and activated SFs. Furthermore, TA-loaded NM@Lip (TA-NM@Lip) effectively repolarizes M1 macrophages to the M2 phenotype and transforms pathological SFs to the deactivated phenotype by inhibiting the PI3K/Akt pathway. NM@Lip retains in the joint for up to 28 days and selectively distributes into M1 macrophages and activated SFs in synovium with low distribution in cartilage. TA-NM@Lip decreases the levels of pro-inflammatory cytokines, chemokines, and cartilage-degrading enzymes in osteoarthritic joints. In a rodent model of osteoarthritis-related pain, a single intra-articular TA-NM@Lip injection attenuates synovitis effectively and achieves complete pain relief with long-lasting effects. In a rodent model of osteoarthritis-related joint degeneration, repeated intra-articular TA-NM@Lip injections induce no obvious cartilage damage and effectively attenuate cartilage degeneration. Taken together, TA-NM@Lip represents a promising nanotherapeutic approach for osteoarthritis therapy.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.